Основные законы распределения Задачи с решениями


  • Биномиальный закон.
  • Закон Пуассона.
  • Геометрическое распределение.
  • Гипергеометрическое распределение.
  • Равномерный закон.
  • Показательный (экспоненциальный) закон.
  • Нормальный закон.
  • Логарифмически-нормальное распределение.
  • Функция надежности.

Случайная величина X имеет нормальный закон распределения с параметрами m=2, σ=2 . Найти: а) плотность вероятности f(x); б) математическое ожидание и дисперсию; в) вероятности P{1<X<4}, P{X<2,5}.

1. Случайная величина X равномерно распределена на отрезке [25,100]. Найти вероятность P(35<X<60).

2. Случайная величина X распределена по показательному закону с параметром 4. Найти вероятность P(0,1<X<0,5).

Случайная величина X распределена по нормальному закону с параметрами 7, 2,5. Найти: а) вероятность P(1,5<X<25), б) интервал (x3,x4), симметрично расположенный относительно среднего значения, в который с вероятностью 0,95 попадает X.

В ткацком станке 1500 нитей. Вероятность обрыва одной нити за один час равна 0,008, X – число обрывов нити за данные 20 минут. Найти вероятность P(X=3), P(X>1). (Ответ вычислить по предельной теореме Пуассона).

X – биномиально распределенная случайная величина с параметрами n=1000 и p=2/7. Найти P(X=300), P(200<X<325). (Ответ вычислить по предельным теоремам Муавра-Лапласа).

Время безотказной работы двигателя автомобиля распределено по показательному закону. Известно, что среднее время наработки двигателя на отказ между техническим обслуживанием 90ч. Определить время безотказной работы двигателя за 80ч.

Случайная величина X распределена по биномиальному закону с параметрами 5, 0,3. Найти p(X=4), p(X=0), p(X=5).

Случайная величина X распределена по пуассоновскому закону с параметром 4. Построить её функцию распределения для значений x≤4,5. Найти вероятность P(X>1).

Случайная величина X распределена по биномиальному закону с параметрами 5, 0,4. Найти p(X=1), p(X=0), p(X=5).

Проводится серия независимых испытаний до первого появления благоприятного исхода. В каждом испытании благоприятный исход может появиться с одинаковой вероятностью. Среднее число всех испытаний равно 8. Найти вероятность, что неудачных исходов будет не более двух.

Имеется 8 изделий, из них 5 бракованные. Для контроля качества из них отбирают 3 изделия. X – число бракованных изделий среди отобранных. Составить закон распределения X, найти вероятность обнаружить брак (т.е. встретить хотя бы одно бракованное изделие).

1. Случайная величина X равномерно распределена на отрезке [-2,70]. Найти вероятность P(22<X<80).

2. Случайная величина X распределена по показательному закону с параметром 2,5. Найти вероятность P(0,4<X<1).

Случайная величина X распределена по нормальному закону с параметрами 5, 1,25. Найти: а) вероятность P(-2,5<X<7), б) интервал (x3,x4), симметрично расположенный относительно среднего значения, в который с вероятностью 0,91 попадает X.

В ткацком станке 1300 нитей. Вероятность обрыва одной нити за один час равна 0,03, X – число обрывов нити за данные 6 минут. Найти вероятность P(X=3), P(X>1). (Ответ вычислить по предельной теореме Пуассона).

X – биномиально распределенная случайная величина с параметрами n=900 и p=8/10. Найти P(X=700), P(500<X<730). (Ответ вычислить по предельным теоремам Муавра-Лапласа).

Случайная величина X распределена по пуассоновскому закону с параметром 1,9. Построить её функцию распределения для значений x≤4,5. Найти вероятность P(X>1).

Вес тропического грейпфрута, выращенного в Краснодарском крае, нормально распределенная случайная величина с неизвестным математическим ожиданием и дисперсией, равной 0,04. Агрономы знают, что 65% фруктов весят меньше, чем 0,5 кг. Найдите ожидаемый вес случайно выбранного грейпфрута.

В партии из 10 деталей имеются 2 неисправных. Для контроля берутся любые 3 детали. Построить ряд распределения случайной величины X - числа неисправных деталей среди 3 выбранных. Найти функции F(x) и f(x), вычислить M(x) и D(x).

Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины Х. Написать плотность распределения вероятностей и схематично построить ее график. Найти вероятность того, что Х примет значение из интервала (α, β). a=9, σ=3, α=8, β=18.

Стрелок производит 7 выстрелов по различным мишеням, причем выстрелы по каждой мишени производятся до первого попадания в нее, после чего выстрелы производятся по следующей мишени. Вероятность попадания при каждом выстреле равна 0,8. Найти закон распределения случайной величины X — числа пораженных мишеней.

Момент прихода автобуса к остановке распределен равновероятно в интервале от 0 до 5 минут. Определите вероятность того, что время ожидания автобуса будет находиться в интервале от 1 до 3 минут.

Заданы математическое ожидание m и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу (α;β); 2) вероятность того, что абсолютная величина отклонения |X-m| окажется меньше δ, где m=12, σ=5, α=17, β=22, δ=15.

Считается, что отклонение длины изготовляемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Если стандартная длина равна 40 см, и среднее квадратичное отклонение 0,4, то какую точность длины можно гарантировать с вероятностью 0,8?

Вероятность того, что за первого кандидата избиратель отдаст свой голос, равна 0,6. Проголосовали 500 избирателей. Какова вероятность того, что первый кандидат наберет на выборах: а) 250 голосов; б) от 25 до 50 голосов.

 Случайная величина Х имеет нормальный закон распределения с параметрами а и $\sigma^2$  

Найти: 

а)  параметр $\sigma^2$, если известно, что математическое ожидание М(Х) = 5 и вероятность P(2 < X < 8) = 0,9973;

б) вероятность Р(Х < 0)

 Браковка шариков для подшипников производится следующим образом: если шарик проходит через отверстие диаметра $d_1$ , но не проходит через отверстие диаметра $d_2$ ($d_2$ < $d_1$), то шарик считается годным. Если какое-либо из этих условий нарушается, то шарик бракуется. Считается, что диаметр шарика — случайная величина, распределенная по нормальному закону с параметрами $m = \frac {d_1 + d_2} {2}$, $\sigma = \beta (d_1 - d_2)$. 0 < $\beta$ < 0,5 Каким следует выбрать коэффициент β, чтобы брак составлял не более 3% всей продукции?

 Средняя температура в квартире в период отопительного сезона равна 22°C, а ее среднее квадратическое отклонение — 0,5°C. С вероятностью, не меньшей 0,96, найти границы, в которых заключена температура в квартире, считая ее нормально распределенной случайной величиной.

 Найти математическое ожидание и дисперсию нормально распределенной случайной величины X, если известно, что P{X<0}=0,2 и P{Х>3}=0,15. Построить кривую распределения и найти ее максимум.

 Случайная величина X имеет нормальный закон распределения с параметрами m=1, σ=2.

Найти:

а) плотность вероятности f (x);

б) математическое ожидание и дисперсию;

в) вероятности P{0<X<3}, P{X<1,5}.

 Случайная величина X имеет нормальный закон распределения с параметрами m=0, σ=2.

Найти вероятность того, что эта случайная величина принимает значение:

а) в интервале (–1; 2);

б) меньшее –0,5;

в) отличающееся от своего среднего значения по абсолютной величине не больше, чем на 1.

 Случайная величина X имеет нормальный закон распределения с параметрами m=-10, σ =3 . Заданы точки –17, –13, –7, –1, 2 на числовой оси, разделяющие ее на шесть интервалов. Найти вероятности того, что случайная величина X принимает значения на этих интервалах.

 Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Если стандартная длина равна m=40 см и среднее квадратическое отклонение равно σ = 0,4 см, то какую точность длины изделия можно гарантировать с вероятностью 0,8?

Back to top