Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №9.8


 Случайная величина X имеет нормальный закон распределения с параметрами m =1, σ = 2. Найти вероятность того, что модуль этой случайной величины примет значение, большее 2,5 .

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Из последовательности чисел 1, 2 , …, n наудачу выбираются два числа. Какова вероятность того, что одно из них меньше k , а другое больше k , где 1 < k < n — произвольное целое число?

 На отрезке OA длины L наудачу поставлены две точки B и C. Найти вероятность того, что длина отрезка BC меньше L/2.

 Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,6 и 0,7. Найти вероятность того, что у первого баскетболиста будет больше попаданий, чем у второго.

 Литье в болванках поступает из двух заготовительных цехов: 65 % из первого и 35 % — со второго. При этом материал первого цеха имеет 15 % брака, а второго — 25 %. Найти вероятность того, что одна взятая наугад болванка без дефектов.

 В партии из 12 деталей имеется 3 бракованных. Из партии случайным образом извлечены 3 детали. Составить ряд распределения числа доброкачественных деталей среди отобранных.

 Стрелок производит 7 выстрелов по различным мишеням, причем выстрелы по каждой мишени производятся до первого попадания в нее, после чего выстрелы производятся по следующей мишени. Вероятность попадания при каждом выстреле равна 0,5. Найти дисперсию числа пораженных мишеней.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (-0,5; 1,5).
Back to top