Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №10.3


 Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,6 и 0,7. Найти вероятность того, что у первого баскетболиста будет больше попаданий, чем у второго.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Литье в болванках поступает из двух заготовительных цехов: 65 % из первого и 35 % — со второго. При этом материал первого цеха имеет 15 % брака, а второго — 25 %. Найти вероятность того, что одна взятая наугад болванка без дефектов.

 В партии из 12 деталей имеется 3 бракованных. Из партии случайным образом извлечены 3 детали. Составить ряд распределения числа доброкачественных деталей среди отобранных.

 Стрелок производит 7 выстрелов по различным мишеням, причем выстрелы по каждой мишени производятся до первого попадания в нее, после чего выстрелы производятся по следующей мишени. Вероятность попадания при каждом выстреле равна 0,5. Найти дисперсию числа пораженных мишеней.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (-0,5; 1,5).

 Найти математическое ожидание и дисперсию нормально распределенной случайной величины X, если известно, что P{X<0}=0,2 и P{Х>3}=0,15. Построить кривую распределения и найти ее максимум.

 Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Найти вероятность того, что хотя бы два из них имеют одинаковую стоимость.

 Какова вероятность того, что сумма трех наудачу взятых отрезков, длина каждого из которых не превосходит l, будет больше l?

 На отрезке OA длины L наудачу поставлены две точки B и C. Найти вероятность того, что длина отрезка BC меньше L/2.

 Из последовательности чисел 1, 2 , …, n наудачу выбираются два числа. Какова вероятность того, что одно из них меньше k , а другое больше k , где 1 < k < n — произвольное целое число?

 Случайная величина X имеет нормальный закон распределения с параметрами m =1, σ = 2. Найти вероятность того, что модуль этой случайной величины примет значение, большее 2,5 .

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина X примет значения из интервала (15; 17).

 Из колоды в 32 карты выбирается 4 карты. Найти математическое ожидание числа карт трефовой масти среди отобранных.

 Стрелок дважды стреляет по мишени, состоящей из трех концентрических кругов. За попадание в центральный круг дается три очка, в окружающее его кольцо — два, и за попадание во внешнее кольцо — одно очко. Вероятности попадания в эти части мишени равны соответственно 0,3, 0,3 и 0,1. Найти закон распределения общего числа набранных очков.

 Производится 4 независимых опыта, в каждом из которых событие A происходит с вероятностью 0,3. Событие B наступает с вероятностью, равной 1, если событие A произошло не менее двух раз; не может наступить, если событие A не имело места; и наступает с вероятностью 0,6, если событие А имело место один раз. Найти вероятность появления события B.

Back to top