Случайная величина X распределена по нормальному закону с параметрами 7, 2,5. Найти: а) вероятность P(1,5<X<25), б) интервал (x3,x4), симметрично расположенный относительно среднего значения, в который с вероятностью 0,95 попадает X.
Другие задачи по теории вероятности
В ткацком станке 1500 нитей. Вероятность обрыва одной нити за один час равна 0,008, X – число обрывов нити за данные 20 минут. Найти вероятность P(X=3), P(X>1). (Ответ вычислить по предельной теореме Пуассона).
X – биномиально распределенная случайная величина с параметрами n=1000 и p=2/7. Найти P(X=300), P(200<X<325). (Ответ вычислить по предельным теоремам Муавра-Лапласа).
Для того, чтобы проверить точность своих финансовых счетов, компания регулярно пользуется услугами аудиторов для проверки бухгалтерских проводок счетов. Известно, что служащие компании при обработке входящих счетов допускают 5% ошибок. Аудитор случайно отбирает 3 входящих документа. Составить закон распределения числа ошибок, выявленных аудитором. Найти числовые характеристики. Составить функцию распределения, построить ее график. Найти вероятность того, что аудитор обнаружит более чем одну ошибку.
Образуют ли данные события полную группу событий пространства элементарных событий описанного эксперимента; если да, то являются ли равновозможными; если нет — являются ли несовместными?
Эксперимент — бросание двух правильных монет; событие A — «выпало два герба», событие B — «выпало две решки»; событие C — «выпал один герб и одна решка».
Из колоды в 36 карт (4 масти по 9 карт, от шестерки до туза) наудачу и без возвращения выбираются 5 карт. Найти вероятности следующих событий:
- а) {попадется не менее двух тузов};
- б) {попадется не менее двух тузов или не менее трех королей}.
В коробке три шара - два белых и черный. Из коробки n раз с возвращением вынимается шар. Какова вероятность того, что ни разу не появится черный шар? Как себя ведет эта вероятность при бесконечно больших значениях n?
Есть 4 шестигранных кубика. На трех из них окрашены белым 4 грани, а на четвертом кубике всего одна грань белая. Наудачу выбранный кубик подбрасывается пять раз. Найти вероятность того, что был выбран четвертый кубик, если при пяти подбрасываниях белая грань выпала ровно один раз.
1. Случайная величина X равномерно распределена на отрезке [25,100]. Найти вероятность P(35<X<60).
2. Случайная величина X распределена по показательному закону с параметром 4. Найти вероятность P(0,1<X<0,5).
Непрерывная случайная величина X принимает значения на интервале (0;16) и имеет там плотность распределения f(x)=Cx-1/2 с параметром C. Найти: константу C, функцию распределения, моду, M(X), D(X).
В партии из 8 деталей 6 – стандартных. Наугад отбираются две детали. Составить закон распределения случайной величины – числа стандартных деталей среди отобранных. Найти ее математическое ожидание, дисперсию и функцию распределения.
Непрерывная случайная величина X принимает значения на интервале (1;+∞) и имеет там функцию распределения F(x)=1-C/x3 с параметром C. Найти: параметр C, медиану, вероятность P(0,5<X<2).
При выпуске телевизоров количество экземпляров высшего качества в среднем составляет 80%. Выпущено 400 телевизоров. Найти: а) вероятность того, что 300 из них высшего качества; б) границы, в которых с вероятностью 0,9907 заключена доля телевизоров высшего качества.
В типографии имеется 5 плоскопечатающих машин. Для каждой вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работают: а) 2 машины; б) хотя бы одна машина.
На складе имеется 20 приборов, из них 2 неисправны. При отправке потребителю проверяется исправность приборов. Найти вероятность того, что первые 3 проверенных прибора исправны.
Загружаем...