Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №7.8


 Браковка шариков для подшипников производится следующим образом: если шарик проходит через отверстие диаметра $d_1$ , но не проходит через отверстие диаметра $d_2$ ($d_2$ < $d_1$), то шарик считается годным. Если какое-либо из этих условий нарушается, то шарик бракуется. Считается, что диаметр шарика — случайная величина, распределенная по нормальному закону с параметрами $m = \frac {d_1 + d_2} {2}$, $\sigma = \beta (d_1 - d_2)$. 0 < $\beta$ < 0,5 Каким следует выбрать коэффициент β, чтобы брак составлял не более 3% всей продукции?

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Из полного набора костей домино наугад выбираются две. Найти вероятность того, что обе они — не дубли.

 На отрезке OA длины L наудачу поставлены две точки B и C. Найти вероятность того, что длина отрезка BC будет меньше расстояния от точки O до ближайшей к ней точке.

 Орудие осуществляет стрельбу по цели, для поражения которой необходимо попасть в нее дважды. Вероятность попадания в цель при первом выстреле равна 0,5; в дальнейшем она не меняется при промахах, но после первого попадания вероятность промаха при дальнейших выстрелах уменьшается вдвое. Боекомплект составляет 5 снарядов. Найти вероятность того, что цель будет поражена, если первый выстрел был точным.

 Известно, что 96% выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,98 и нестандартную — с вероятностью 0,05. Определить вероятность того, что изделие, прошедшее упрощенный контроль, удовлетворяет стандарту.

 Во время эстафетных соревнований по биатлону требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,7. Определить вероятность того, что при стрельбе на двух огневых рубежах спортсмен поразит все мишени, израсходовав при этом 12 патронов.

 Из урны, содержащей 3 белых и 4 черных шара, извлекаются без возвращения шары до появления белого шара. Найти закон распределения и математическое ожидание случайного числа вынутых из урны шаров.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величинапримет значения из интервала (1/4; 3/4).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина примет значения из интервала (-1; 1).

 В каждом из трех периодов хоккейного матча команда забивает две шайбы с вероятностью 0,3, одну шайбу — с вероятностью 0,5 и не забивает шайб с вероятностью 0,2. Найти закон распределения числа шайб, забитых в матче.

 Из последовательности чисел 1, 2, 3, …, 99, 100 выбирают наугад с возвращением 10. Найти вероятность того, что среди них кратных 7 будет не более двух.

 Имеется 5 урн следующего состава: две урны состава 1 А — по 1 белому и 4 черных шара; одна урна состава 2 белых и 3 черных шара; две урны состава — по 3 белых и 2 черных шара. Из одной наудачу выбранной урны взят шар, он оказался белым. Найти вероятность того, что этот шар был вынут из урны третьего состава.

 Имеется три ящика, в первом из которых 6 стандартных и 3 бракованных детали, во втором — 5 стандартных и 4 бракованных и в третьем — 7 стандартных и 4 бракованных. Найти вероятность того, что если из каждого ящика выбрать по детали, то среди них будет одна стандартная и две бракованных.

 Найти вероятность того, что монета радиуса r , брошенная на бесконечную шахматную доску с клетками шириной a (a>2r), пересечет не более одной стороны клетки.

 Из колоды в 52 карты выбираются случайным образом без возвращения 2 карты.

Найти вероятность того, что будут выбраны карты разных значений.
Back to top