Орудие осуществляет стрельбу по цели, для поражения которой необходимо попасть в нее дважды. Вероятность попадания в цель при первом выстреле равна 0,5; в дальнейшем она не меняется при промахах, но после первого попадания вероятность промаха при дальнейших выстрелах уменьшается вдвое. Боекомплект составляет 5 снарядов. Найти вероятность того, что цель будет поражена, если первый выстрел был точным.
Другие задачи по теории вероятности
Известно, что 96% выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,98 и нестандартную — с вероятностью 0,05. Определить вероятность того, что изделие, прошедшее упрощенный контроль, удовлетворяет стандарту.
Во время эстафетных соревнований по биатлону требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,7. Определить вероятность того, что при стрельбе на двух огневых рубежах спортсмен поразит все мишени, израсходовав при этом 12 патронов.
Из урны, содержащей 3 белых и 4 черных шара, извлекаются без возвращения шары до появления белого шара. Найти закон распределения и математическое ожидание случайного числа вынутых из урны шаров.
Плотность вероятности непрерывной случайной величины X имеет вид:
Средняя температура в квартире в период отопительного сезона равна 22°C, а ее среднее квадратическое отклонение — 0,5°C. С вероятностью, не меньшей 0,96, найти границы, в которых заключена температура в квартире, считая ее нормально распределенной случайной величиной.
Имеется урна, в которой 4 белых, 3 красных и 7 черных шаров. Определить вероятность того, что при выборе из урны двух шаров они окажутся белыми.
Из отрезка [–1; 2] наудачу взяты два числа. Найти вероятность того, что их сумма больше единицы, а произведение меньше единицы.