Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №8.4


 Известно, что 96% выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,98 и нестандартную — с вероятностью 0,05. Определить вероятность того, что изделие, прошедшее упрощенный контроль, удовлетворяет стандарту.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Во время эстафетных соревнований по биатлону требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,7. Определить вероятность того, что при стрельбе на двух огневых рубежах спортсмен поразит все мишени, израсходовав при этом 12 патронов.

 Из урны, содержащей 3 белых и 4 черных шара, извлекаются без возвращения шары до появления белого шара. Найти закон распределения и математическое ожидание случайного числа вынутых из урны шаров.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величинапримет значения из интервала (1/4; 3/4).

 Средняя температура в квартире в период отопительного сезона равна 22°C, а ее среднее квадратическое отклонение — 0,5°C. С вероятностью, не меньшей 0,96, найти границы, в которых заключена температура в квартире, считая ее нормально распределенной случайной величиной.

 Имеется урна, в которой 4 белых, 3 красных и 7 черных шаров. Определить вероятность того, что при выборе из урны двух шаров они окажутся белыми.

 Из отрезка [–1; 2] наудачу взяты два числа. Найти вероятность того, что их сумма больше единицы, а произведение меньше единицы.

 В ящике содержится 6 деталей типа А, 5 — типа Б и 3 — типа В. Детали выбираются наугад, причем вынутая деталь типа А или Б откладывается в сторону, а извлеченная деталь типа В возвращается назад в ящик. Определить вероятность того, что если выбрать 2 детали, то они будут разных типов.

 Орудие осуществляет стрельбу по цели, для поражения которой необходимо попасть в нее дважды. Вероятность попадания в цель при первом выстреле равна 0,5; в дальнейшем она не меняется при промахах, но после первого попадания вероятность промаха при дальнейших выстрелах уменьшается вдвое. Боекомплект составляет 5 снарядов. Найти вероятность того, что цель будет поражена, если первый выстрел был точным.

 На отрезке OA длины L наудачу поставлены две точки B и C. Найти вероятность того, что длина отрезка BC будет меньше расстояния от точки O до ближайшей к ней точке.

 Из полного набора костей домино наугад выбираются две. Найти вероятность того, что обе они — не дубли.

 Браковка шариков для подшипников производится следующим образом: если шарик проходит через отверстие диаметра $d_1$ , но не проходит через отверстие диаметра $d_2$ ($d_2$ < $d_1$), то шарик считается годным. Если какое-либо из этих условий нарушается, то шарик бракуется. Считается, что диаметр шарика — случайная величина, распределенная по нормальному закону с параметрами $m = \frac {d_1 + d_2} {2}$, $\sigma = \beta (d_1 - d_2)$. 0 < $\beta$ < 0,5 Каким следует выбрать коэффициент β, чтобы брак составлял не более 3% всей продукции?

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a.
б) Построить график функции распределения F(x).
в) Найти M(X) , D(X) и σ(X).
г) Найти вероятность того, что случайная величина примет значения из интервала (-1; 1).

 В каждом из трех периодов хоккейного матча команда забивает две шайбы с вероятностью 0,3, одну шайбу — с вероятностью 0,5 и не забивает шайб с вероятностью 0,2. Найти закон распределения числа шайб, забитых в матче.

 Из последовательности чисел 1, 2, 3, …, 99, 100 выбирают наугад с возвращением 10. Найти вероятность того, что среди них кратных 7 будет не более двух.

Back to top