- Закон распределения двумерной случайной величины.
- Функция распределения.
- Совместная плотность вероятности.
- Математическое ожидание.
- Дисперсия.
- Среднеквадратическое отклонение.
- Регрессия.
- Условные законы распределения.
- Условная функция распределения.
- Плотности вероятности составляющих.
- Условные плотности вероятности.
- Зависимость и независимость случайных величин.
- Ковариация и коэффициент корреляции.
Дискретная случайная величина X задана законом распределения:
X | 1 | 3 | 5 |
p | 0,4 | 0,1 | 0,5 |
Дискретная случайная величина X задана законом распределения:
X | -1 | -2 | 1 | 2 |
p | 0,3 | 0,1 | 0,2 | 0,4 |
Задана плотность распределения f(x) случайной величины X, возможные значения которой заключены в интервале (а,b). Найти плотность распределения случайной величины Y=3Х.
В прямоугольной системе координат xOy из точки A(4;0) наудачу (под произвольным углом t) проведен луч, пересекающий ось Оу. Найти дифференциальную функцию g(y) распределения вероятностей ординаты у точки пересечения проведенного луча с осью Oy.
Случайная величина X распределена равномерно в интервале (0,2π). Найти плотность распределения g(y) случайной величины Y=CosX.
Случайная величина X распределена нормально с математическим ожиданием, равным а, и среднеквадратическим отклонением, равным σ. Доказать, что линейная функция Y=АХ+В также распределена нормально, причем M(Y)=Аa+B, σ(Y) =|A|σ.
Задана плотность
нормально распределенной случайной величины X. Найти плотность распределения g(y) случайной величины Y=X2.
Случайная величина X задана плотностью распределения f(x)=(1/2)Sinx в интервале (0,π); вне этого интервала f(x)=0. Найти математическое ожидание случайной величины Y=φ(x)=X2, определив предварительно плотность распределения g(y) величины Y.
Случайная величина X задана плотностью распределения f(x)=(1/2)Sinx в интервале (0,π); вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2, используя плотность распределения g(y).
Задана функция распределения F(x) случайной величины X. Найти функцию распределения G(y) случайной величины Y=ЗХ+2.
Дискретные независимые случайные величины X и Y заданы распределениями:
X | 1 | 3 |
p | 0,3 | 0,7 |
X | 2 | 4 |
p | 0,6 | 0,4 |
Найти распределение случайной величины Z=X+Y.
Дискретные независимые случайные величины X и Y заданы распределениями:
Найти композицию этих законов, т.е. плотность распределения случайной величины Z=X+Y.
Заданы плотности распределений независимых равномерно распределенных случайных величин X и Y: f1(x)= 1/2 в интервале (0,2), вне этого интервала f1(x)=0; f2(y)=1/2 в интервале (0,2), вне этого интервала f2(x)=0. Найти функцию распределения и плотность распределения случайной величины Z=X+Y. Построить график плотности распределения g(z).
Задано распределение вероятностей дискретной двумерной случайной величины:
Y | X | ||
3 | 10 | 12 | |
4 | 0,17 | 0,13 | 0,25 |
5 | 0,10 | 0,30 | 0,05 |
Найти законы распределения составляющих X и Y.
Задана функция распределения двумерной случайной величины:
Найти вероятность попадания случайной точки (X,Y) в прямоугольник, ограниченный прямыми x=0, x= π/4, y=π/6, y=π/3.
Задана функция распределения двумерной случайной величины:
Найти двумерную плотность вероятности системы.
В круге x2+y2≤R2 двумерная плотность вероятности:
вне круга f(x,y)=0. Найти: а) постоянную C; б) вероятность попадания случайной точки (X,Y) в круг радиуса r=1 с центром в начале координат, если R=2.
Задана двумерная плотность вероятности:
системы (X,Y) двух случайных величин. Найти постоянную C.
Задана дискретная двумерная случайная величина (X,Y):
Y | X | ||
x1=2 | x2=5 | x3=8 | |
y1=0,4 | 0,15 | 0,30 | 0,35 |
y2=0,8 | 0,05 | 0,12 | 0,03 |
Найти: а) безусловные законы распределения составляющих; б) условный закон распределения составляющей X при условии, что составляющая Y приняла значение y1=0,4; в) условный закон распределения Y при условии, что Х=x2= 5.
Задана плотность совместного распределения непрерывной двумерной случайной величины (X,Y):
Найти: а) плотности распределения составляющих; б) условные плотности распределения составляющих.
Доказать, что если двумерную плотность вероятности системы случайных величин (X,Y) можно представить в виде произведения двух функций, одна из которых зависит только от x, а другая - только от y, то величины X и Y независимы.
Доказать, что если X и Y связаны линейной зависимостью Y=aX+b, то абсолютная величина коэффициента корреляции равна единице.
Подбрасывают одновременно две игральные кости; случайная величина Х - сумма очков, в результате испытания; случайная величина Y - их произведение. Показать, что двумерная случайная величина (X,Y) есть функция элементарных исходов (событий) ω.
Закон распределения дискретной двумерной случайной величины (X,Y) задан таблицей:
xi yi | -1 | 0 | 1 | 2 |
1 | 0,1 | 0,25 | 0,3 | 0,15 |
2 | 0,10 | 0,05 | 0,00 | 0,05 |
Найти: а) законы распределения одномерных случайных величин X и Y; б) условные законы распределения случайной величины X при условии Y=2 и случайной величины Y при условии X=1; в) вычислить P(Y<Х).
Случайная величина распределена равномерно в круге радиуса R=1 (рис.5.5). Определить: а) выражение совместной плотности и функции распределения двумерной случайной величины (X,Y), б) плотности вероятности и функции распределения одномерных составляющих X и Y, в) вероятность того, что расстояние от точки (X,Y) до начала координат будет меньше 1/3.
По данным примера 5.3 определить: а) условные плотности случайных величин Х и Y; б) зависимы или независимы случайные величины X и Y; в) условные математические ожидания и условные дисперсии.
По данным примера 5.2 определить ковариацию и коэффициент корреляции случайных величин Х и Y.
По данным примера 5.3 определить: а) ковариацию и коэффициент корреляции случайных величин Х и Y; б) коррелированны или не коррелированны эти случайные величины.
Найти плотность вероятности случайной величины Y=1–X3, где случайная величина Х распределена по закону Коши с плотностью вероятности .
Найти математическое ожидание и дисперсию случайной величины Y=2-3Sinx если плотность вероятности случайной величины Х есть на отрезке .
Найти закон распределения суммы двух случайных величин, распределенных равномерно на отрезке [0;1].