Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №28.4


 Происходит бой между A и B. У A в запасе два выстрела, у B — один. Начинает стрельбу A: он делает по B один выстрел, причем вероятность поражения B равна 0,2. Если не поражен, он стреляет и поражает A с вероятностью 0,3. Если B промахивается, A делает последний выстрел и поражает B с вероятностью 0,4. Найти вероятность того, что в бою будет поражен B.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

 Найти закон распределения и дисперсию случайного числа попаданий при 10 выстрелах, если вероятность попадания при каждом выстреле равна 0,9.

 Случайные значения веса зерна распределены по нормальному закону с математическим ожиданием 0,17 г и средним квадратическим отклонением 0,04 г. Доброкачественные всходы дают зерна, вес которых более 0,12 г. Найти процент семян, которые дадут доброкачественные всходы.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (0,2; 1,2).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения, не меньшие 2.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (0,2; 0,5).

 Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,6. Найти закон распределения и математическое ожидание числа пораженных мишеней.

 В круг вписан правильный треугольник. Найти вероятность того, что из 4 точек, наудачу брошенных в круг, одна окажется внутри треугольника и по одной — в каждом сегменте.

Back to top