Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №28.3


 Вероятности попадания в цель при стрельбе из трех орудий таковы: р1=0,6, p2=0,5p3=0,8. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Происходит бой между A и B. У A в запасе два выстрела, у B — один. Начинает стрельбу A: он делает по B один выстрел, причем вероятность поражения B равна 0,2. Если не поражен, он стреляет и поражает A с вероятностью 0,3. Если B промахивается, A делает последний выстрел и поражает B с вероятностью 0,4. Найти вероятность того, что в бою будет поражен B.

 Найти закон распределения и дисперсию случайного числа попаданий при 10 выстрелах, если вероятность попадания при каждом выстреле равна 0,9.

 Случайные значения веса зерна распределены по нормальному закону с математическим ожиданием 0,17 г и средним квадратическим отклонением 0,04 г. Доброкачественные всходы дают зерна, вес которых более 0,12 г. Найти процент семян, которые дадут доброкачественные всходы.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (0,2; 1,2).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения, не меньшие 2.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (0,2; 0,5).

 Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,6. Найти закон распределения и математическое ожидание числа пораженных мишеней.

 Найти вероятность того, что произведение двух случайно выбранных чисел из интервала (0; 1) больше 0,9.

 В урне 15 белых и 10 черных шаров. Один за другим из урны вынимают два шара. Какова вероятность того, что первый шар окажется белым, а второй — черным?

 Случайная величина X имеет нормальный закон распределения с параметрами m=-8, σ=2. Заданы точки –14, –10, –7, –3, 1 на числовой оси, разделяющие ее на 6 интервалов. Найти вероятности того, что случайная величина X принимает значения на этих интервалах.

 В каждом из трех матчей хоккейного турнира команда с вероятностью 0,4 одерживает победу, получая за нее 2 очка, с вероятностью 0,4 играет вничью, получая 1 очко, и с вероятностью 0,2 терпит поражение, не получая за это очков. Найти закон распределения общего числа набранных очков.

 Завод изготовляет изделия, каждое из которых должно подвергаться четырем видам испытаний. Первое испытание изделие проходит благополучно с вероятностью 0,9; второе — с вероятностью 0,95; третье — с вероятностью 0,8 и четвертое — с вероятностью 0,85. Найти вероятность того, что изделие пройдет благополучно не менее двух испытаний из четырех.

 В семье 5 детей. Найти вероятность того, что среди этих детей — 3 девочки и мальчика. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Наудачу выбраны два числа в пределах от 0 до 1. Найти вероятность того, что их разность не превысит 0,3
Back to top