Выск Н.Д., Селиванов Ю.В. Теория вероятностей: Варианты курсовых заданий. №11.5


 Во время эстафетных соревнований по биатлону спортсмену требуется поразить на огневом рубеже 5 мишеней, имея для этого 7 патронов. Вероятность попадания в мишень при одном выстреле составляет 0,6. Найти закон распределения и математическое ожидание числа пораженных мишеней.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 В круг вписан правильный треугольник. Найти вероятность того, что из 4 точек, наудачу брошенных в круг, одна окажется внутри треугольника и по одной — в каждом сегменте.

 Произведено 3 независимых испытания, в каждом из которых событие A происходит с вероятностью 0,2. Вероятность появления другого события B зависит от числа появлений события A; именно, она равна 0,1 при однократном появлении A , 0,3 — при двукратном и 0,7 — при трехкратном; если событие A не произошло ни разу, то событие B невозможно. Определить наивероятнейшее число появлений события A , если событие B имело место.

 В круге проведен диаметр и перпендикулярный ему радиус, разделившие круг на части. Найти вероятность того, что из трех точек, наудачу брошенных в круг, в каждой части окажется ровно по одной.

 На плоскости построены 3 концентрические окружности с радиусами 2 см, 5 см и 8 см. Найти вероятность того, что монета радиуса 1 см, брошенная наудачу в круг радиуса 8 см (так, что она целиком лежит внутри круга), не пересечет двух других окружностей.

 Минное заграждение поставлено в одну линию с интервалами между минами в 90 (м). Какова вероятность того, что корабль шириной 15 (м), пересекая это заграждение под прямым углом, подорвется на мине? (Размерами мины можно пренебречь.)

 Цель, по которой ведется стрельба, состоит из трех различных по уязвимости частей. Для поражения цели достаточно одного попадания в первую часть, или двух попаданий во вторую, или трех попаданий в третью. Если снаряд попал в цель, то вероятность поражения первой, второй и третьей части равна соответственно 0,1, 0,2 и 0,7. Известно, что в цель попало ровно два снаряда. Найти вероятность того, что цель будет поражена.

 В круг вписан квадрат. Найти вероятность того, что из 4 точек, наудачу брошенных в круг, ни одна не попадет в квадрат.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (0,2; 0,5).

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения, не меньшие 2.

 Плотность вероятности непрерывной случайной величины X имеет вид:

а) Найти значение параметра a .
б) Построить график функции распределения F(x) .
в) Найти M(X) , D(X) и σ(X) .
г) Найти вероятность того, что случайная величина примет значения из интервала (0,2; 1,2).

 Случайные значения веса зерна распределены по нормальному закону с математическим ожиданием 0,17 г и средним квадратическим отклонением 0,04 г. Доброкачественные всходы дают зерна, вес которых более 0,12 г. Найти процент семян, которые дадут доброкачественные всходы.

 Найти закон распределения и дисперсию случайного числа попаданий при 10 выстрелах, если вероятность попадания при каждом выстреле равна 0,9.

 Происходит бой между A и B. У A в запасе два выстрела, у B — один. Начинает стрельбу A: он делает по B один выстрел, причем вероятность поражения B равна 0,2. Если не поражен, он стреляет и поражает A с вероятностью 0,3. Если B промахивается, A делает последний выстрел и поражает B с вероятностью 0,4. Найти вероятность того, что в бою будет поражен B.

 Вероятности попадания в цель при стрельбе из трех орудий таковы: р1=0,6, p2=0,5p3=0,8. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.

Back to top