Е.Г. Репина, Е.И. Суханова. Теория вероятностей и математическая статистика: Варианты контрольных работ. №.8.7


 В результате исследования зависимости выпуска валовой продукции (Y,тыс.руб.) от основных фондов (Х, тыс.руб.) однотипных предприятий получены следующие данные:

Х 11 22 35 48 61 74
Y 3 8 11 20 25 33

 Полагая, что между Х и Y имеет место линейная зависимость, определить выборочный коэффициент корреляции, объяснить его смысл, проверить значимость коэффициента корреляции при уровне значимости 0,05. Построить уравнение регрессии и объяснить его.


Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Экономическое обследование пяти предприятий дало следующие результаты:

Х 3 4 6 7 10
Y 3 5 6 7 9

где Y-выпуск готовой продукции на одного работающего, тыс. руб.; Х-энерговооруженность труда работающего, кВтч. Полагая, что между Х и Y имеет место линейная зависимость, определить выборочный коэффициент корреляции, объяснить его смысл, проверить значимость коэффициента корреляции при уровне значимости 0,05. Построить уравнение регрессии и объяснить его.


 По данным таблицы изменения веса поросят (Y, кг) в зависимости от их возраста (Х, недели) построить эмпирическую линию регрессии и по ее виду определить предполагаемую форму связи Y и Х. Оценить тесноту корреляционной связи (уровень значимости принять равным 0,05). Построить уравнение регрессии, объяснить его.

Х 0 1 2 3 4 5 6 7 8
Y 1,3 2,5 3,9 5,2 6,3 7,5 9,0 10,8 13,1

 


 

 Определить тесноту связи выпуска продукции Х (тыс.шт.) и себестоимость одного изделия Y (руб.) на основе следующих данных:

X 2 3 4 5 6
1,9 1,7  1,8 1,6 1,4

Проверить значимость выборочного коэффициента корреляции при уровне значимости 0,05. Построить линейное уравнение регрессии и объяснить его


 По пяти предприятиям одной отрасли имеются данные о валовой продукции и издержкам производства:

Валовая продукция, тыс. шт 40 50 60 70 80
Издержки производства, тыс. руб. 6 4,5 5 4 3,5

 Проверить значимость коэффициента корреляции при =0,05. Если коэффициент корреляции значим, то написать уравнение регрессии, объяснить его смысл. Спрогнозировать издержки производства при заданном объеме валовой продукции в 65 тыс.шт.


В результате специального обследования получено выборочное распределение стажа работников завода (Х-стаж работы, лет; miЭ - эмпирические частоты; miТ - теоретические частоты нормального распределения):

xi 5 7 9 11 13 15 17 19 21
miЭ 15 26 25 30 26 21 24 20 13
miT 9 16 25 32 34 30 22 18 14

Используя критерий Пирсона, при уровне значимости 0,01 проверить, согласуется ли гипотеза о нормальном распределении признака Х генеральной совокупности с эмпирическим распре- делением выборки.

В результате специального обследования получено выборочное распределение времени простоя фрезерных станков одного цеха (Х- время простоя, мин;miЭ - эмпирические частоты;miT - теоретические частоты нормального распределения):

xi 5,5 10,5 15,5 20,5 25,5 30,5 35,5
miЭ 6 8 15 40 16 8 7
miT 5 10 20  27 21 11 6

Используя критерий Пирсона, при уровне значимости 0,01 проверить, согласуется ли гипотеза о нормальном распределении признака Х генеральной совокупности с эмпирическим распределением выборки.

В результате обследования получено следующее распределение дневной выручки от продажи продукции в промтоварных магазинах (Х- дневная выручка,руб.;miЭ -  эмпирические частоты (число магазинов);miT - теоретические частоты, вычисленные в предположении о нормальном законе распределения):

xi 2 3 4 5 6 7 8
miЭ 7 15 20 25 18 13 5
miT 5 14 19 26 20 12 6

Используя критерий Пирсона, при уровне значимости 0,01 проверить гипотезу о нормальном распределении признака Х генеральной совокупности.

 Определить тесноту связи выпуска продукции Х (тыс.шт.) и себестоимость одного изделия Y (руб.) на основе следующих данных:

Х 3 4 5 6 7
Y 10 8 7 5 2

Проверить значимость выборочного коэффициента корреляции при уровне значимости 0,05. Построить линейное уравнение регрессии и объяснить его.


 В результате исследования зависимости выпуска валовой продукции (Y, тыс.руб.) от основных фондов (Х, тыс.руб.) однотипных предприятий получены следующие данные:

Х 10 22 35 48 51
Y 3 8 9 14 20

Полагая, что между Х и Y имеет место линейная зависимость, определить выборочный коэффициент корреляции, объяснить его смысл, проверить значимость коэффициента корреляции при уровне значимости 0,05. Построить уравнение регрессии и объяснить его.


 Имеются выборочные данные о стаже работы (Х, лет) и выработке одного рабочего за смену (Y, шт.):

Х 2 3 4 5 6 7
Y 14 15 18 20 22 25

 Проверить значимость выборочного коэффициента корреляции при =0,05. Построить линейное уравнение регрессии и объяснить его. Вычислить предполагаемую среднюю выработку при стаже 5,5 лет.


 Представлены данные, отражающие статистическую связь издержек обращения (Y, тыс.руб.) и товарооборота (Х, тыс.руб.):

Y 5,0 5,2 5,8 6,4 6,6 7,0
Х 17,6 17,5 18,0 18,1 18,2 18,5

  При = 0,1 проверить значимость указанной статистической связи. Построить уравнение регрессии, объяснить его. Спрогнозировать издержки обращения при заданном товарообороте в 17,9 тыс. руб.


 Определить тесноту связи общего веса некоторого растения (Х, г) и веса его семян (Y, г) на основе следующих выборочных данных:

Х 40 50 60 70 80 90 100
Y 20 25 28 30 35 40 45

 Проверить значимость коэффициента корреляции при =0,05. Построить линейное уравнение регрессии и объяснить его.


 Имеются следующие данные по группе предприятий о выпуске продукции (Х, тыс.шт.) и себестоимости одного изделия (Y, руб.):

Х 2,0 3,5  4,0  4,5 5,5 6,0
Y 1,9 1,7  1,8 1,6 1,5 1,4

Вычислить коэффициент корреляции на основе этих данных. При уровне значимости 0,05 проверить нулевую гипотезу о равенстве нулю коэффициента корреляции в генеральной совокупности. Построить уравнение линейной регрессионной зависимости и объяснить его смысл. Спрогнозировать среднюю себестоимость одного изделия при выпуске 6,5 тыс. шт.


 Средняя урожайность пшеницы и глубина вспашки по фермерским хозяйствам даны в следующей таблице:

Глубина вспашки, см 7 8 9 10 11 12
Средняя урожайность, ц\га 8,1  8,3 8,2 9,1  10,3  0,8

При =0,05 проверить значимость корреляционной связи глубины вспашки и средней рожайности пшеницы. Если связь значима, составить уравнение регрессии. Объяснить его. Спрогнозировать урожайность пшеницы при глубине вспашки в 11,5 см.


Back to top