В результате специального обследования получено выборочное распределение времени простоя фрезерных станков одного цеха (Х- время простоя, мин;miЭ - эмпирические частоты;miT - теоретические частоты нормального распределения):
xi | 5,5 | 10,5 | 15,5 | 20,5 | 25,5 | 30,5 | 35,5 |
miЭ | 6 | 8 | 15 | 40 | 16 | 8 | 7 |
miT | 5 | 10 | 20 | 27 | 21 | 11 | 6 |
Используя критерий Пирсона, при уровне значимости 0,01 проверить, согласуется ли гипотеза о нормальном распределении признака Х генеральной совокупности с эмпирическим распределением выборки.
Другие задачи по теории вероятности
В результате обследования получено следующее распределение дневной выручки от продажи продукции в промтоварных магазинах (Х- дневная выручка,руб.;miЭ - эмпирические частоты (число магазинов);miT - теоретические частоты, вычисленные в предположении о нормальном законе распределения):
xi | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
miЭ | 7 | 15 | 20 | 25 | 18 | 13 | 5 |
miT | 5 | 14 | 19 | 26 | 20 | 12 | 6 |
Используя критерий Пирсона, при уровне значимости 0,01 проверить гипотезу о нормальном распределении признака Х генеральной совокупности.
В результате обследования получено выборочное распределение времени, затрачиваемого ператорами бухгалтерских машин на обработку документов складского учета (Х- время, с; miэ - эмпирические частоты (количество документов);miт - теоретические частоты, вычисленные в предположении о нормальном законе распределения):
xi | 100 | 105 | 110 | 115 | 120 | 125 |
miЭ | 5 | 16 | 24 | 13 | 16 | 8 |
miT | 6 | 11 | 18 | 20 | 17 | 10 |
Используя критерий Пирсона, при $alpha$ =0,05 проверить, согласуется ли гипотеза о нормальном распределении признака Х генеральной совокупности с эмпирическим распределением выборки.
В результате обследования опытных участков одинакового размера получено выборочное распределение урожайности ржи (Х- урожайность, ц/га;miэ - эмпирические частоты;miт - теоретические частоты, вычисленные в предположении о нормальном законе распределения):
xi | 16 | 18 | 20 | 22 | 24 | 26 | 28 |
miэ | 5 | 7 | 9 | 10 | 17 | 15 | 11 |
miт | 7 | 9 | 12 | 14 | 12 | 11 | 9 |
Используя критерий Пирсона, при уровне значимости 0,01 проверить, согласуется ли гипотеза о нормальном распределении признака Х генеральной совокупности с эмпирическим распределением выборки.
Установить при уровне значимости 0,05, случайно или значимо расхождение между эмпирическими и теоретическими частотами, которые вычислены, исходя из предположения, что признак Х распределен нормально:
miЭ | 5 | 10 | 35 | 70 | 100 | 80 | 20 | 10 |
miT | 6 | 13 | 37 | 78 | 95 | 65 | 27 | 9 |
Экономический анализ производительности труда предприятий отрасли позволил выдвинуть гипотезу о наличии двух типов предприятий с различной средней величиной показателя производительности труда. Для первой группы (12 объектов) средняя производительность труда xB=119 деталей, исправленная выборочная дисперсия Sx2=126,91; для второй группы (12 объектов), соответственно, yB=107 деталей,Sy2 =136,10. Считая, что выборки извлечены из нормально распределенных генеральных совокупностей Х и Y при уровне значимости 0,05 проверить, случайно ли полученное различие средних показателей производительности труда в группах или же имеются два типа предприятий с различной средней величиной производительности труда.
Для испытания шерстяной ткани на прочность произведены две выборки объемом в 10 и 12 образцов. Средняя прочность оказалась равной 135 и 136 г при исправленных выборочных дисперсиях 4 и 6. Считая выборки извлеченными из нормальных совокупностей, определить при уровне значимости 0,01 существенность расхождения между средними в обеих выборках.
На заводе имеются центробежные насосы, закупленные на предприятиях А и В по 10 шт. Насосы, закупленные на предприятии А, проработали до поломки в среднем 100 дней, исправленное среднее квадратическое отклонение 10 дней; насосы, закупленные на предприятии В, проработали до поломки в среднем 105 дней, исправленное среднее квадратическое отклонение 9 дней. Заводу требуется приобрести еще насосы. Специалист по материально-техническому снабжению решил, что надо закупать насосы на предприятии В. Считая, что выборки извлечены из нормально распределенных генеральных совокупностей, проверить, действительно ли насосы, выпущенные предприятием В, лучше ($alpha$=0,01).