Имеются две случайные величины X и Y, связанные соотношением Y=2-3Х. Числовые характеристики случайной величины X заданы аx=-1; D(X)=4. Найти: а) математическое ожидание и дисперсию случайной величины Y; б) ковариацию и коэффициент корреляции случайной величин Х и Y.
Другие задачи по теории вероятности
Случайная величина X задана плотностью вероятности φ(х)=CosX в интервале (0,π/2); вне этого интервала φ(х)=0. Найти математическое ожидание случайной величины Y=X2.
Случайная величина X распределена с постоянной плотностью вероятности в интервале (1;2) и нулевой плотностью вне этого интервала. Найти математическое ожидание и дисперсию случайной величины Y=1/Х.
Непрерывная случайная величина X распределена в интервале (0;1) по закону с плотностью вероятности:
Непрерывная случайная величина распределена по показательному закону с параметром λ=2. Найти математическое ожидание и дисперсию случайной величины Y=e-x.
Случайная величина X распределена по нормальному закону с параметрами ax=0, σx2=5. Найти математическое ожидание случайной величины Y=1-3X2+4X3.
Имеются независимые случайные величины X, Y. Случайная величина X распределена по нормальному закону с параметрами ax=1, σx2=4. Случайная величина Y распределена равномерно на интервале (0;2). Найти: а) M(X-Y); б) D(X-Y); в) М(Х2); г) М(Y2).
Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500.