Случайная величина X распределена по закону Коши с плотностью вероятности:
Найти плотность вероятности обратной величины Y=1/Х.
Другие задачи по теории вероятности
Дискретная случайная величина X имеет ряд распределения:
xi | -1 | 0 | 1 | 2 |
pi | 0,2 | 0,1 | 0,3 | 0,4 |
Найти математическое ожидание и дисперсию случайной величины Y=2X.
Имеются две случайные величины X и Y, связанные соотношением Y=2-3Х. Числовые характеристики случайной величины X заданы аx=-1; D(X)=4. Найти: а) математическое ожидание и дисперсию случайной величины Y; б) ковариацию и коэффициент корреляции случайной величин Х и Y.
Случайная величина X задана плотностью вероятности φ(х)=CosX в интервале (0,π/2); вне этого интервала φ(х)=0. Найти математическое ожидание случайной величины Y=X2.
Случайная величина X распределена с постоянной плотностью вероятности в интервале (1;2) и нулевой плотностью вне этого интервала. Найти математическое ожидание и дисперсию случайной величины Y=1/Х.
Непрерывная случайная величина X распределена в интервале (0;1) по закону с плотностью вероятности:
Непрерывная случайная величина распределена по показательному закону с параметром λ=2. Найти математическое ожидание и дисперсию случайной величины Y=e-x.
Случайная величина X распределена по нормальному закону с параметрами ax=0, σx2=5. Найти математическое ожидание случайной величины Y=1-3X2+4X3.