Кремер Н.Ш. Теория вероятностей и математическая статистика. №005.035, стр.221


Случайная величина X задана плотностью вероятности φ(х)=CosX в интервале (0,π/2); вне этого интервала φ(х)=0. Найти математическое ожидание случайной величины Y=X2.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

Случайная величина X распределена с постоянной плотностью вероятности в интервале (1;2) и нулевой плотностью вне этого интервала. Найти математическое ожидание и дисперсию случайной величины Y=1/Х.

Непрерывная случайная величина X распределена в интервале (0;1) по закону с плотностью вероятности:

Непрерывная случайная величина распределена по показательному закону с параметром λ=2. Найти математическое ожидание и дисперсию случайной величины Y=e-x.

Случайная величина X распределена по нормальному закону с параметрами ax=0, σx2=5. Найти математическое ожидание случайной величины Y=1-3X2+4X3.

Имеются независимые случайные величины X, Y. Случайная величина X распределена по нормальному закону с параметрами ax=1, σx2=4. Случайная величина Y распределена равномерно на интервале (0;2). Найти: а) M(X-Y); б) D(X-Y); в) М(Х2); г) М(Y2).

Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500.

Сумма всех вкладов в отделении банка составляет 2 млн. рублей, а вероятность того, что случайно взятый вклад не превысит 10 тыс. рублей, равна 0,6. Что можно сказать о числе вкладчиков?

Имеются две случайные величины X и Y, связанные соотношением Y=2-3Х. Числовые характеристики случайной величины X заданы аx=-1; D(X)=4. Найти: а) математическое ожидание и дисперсию случайной величины Y; б) ковариацию и коэффициент корреляции случайной величин Х и Y.

Дискретная случайная величина X имеет ряд распределения:

xi -1 0 1 2
pi 0,2 0,1 0,3 0,4

Найти математическое ожидание и дисперсию случайной величины Y=2X.

Случайная величина X распределена по закону Коши с плотностью вероятности:

Найти плотность вероятности обратной величины Y=1/Х.

Случайная величина распределена по закону Релея с плотностью вероятности:

Найти закон распределения случайной величины

Случайная величина X равномерно распределена в интервале (-π/2;π/2). Найти плотность вероятности случайной величины Y=SinX.

Задана плотность вероятности φ(х) случайной величины X, принимающей только положительные значения. Найти плотность вероятности случайной величины Y, если: а); б); в); г); д).

Независимые случайные величины X, Y распределены по нормальным законам с параметрами ax=2, аy=-3, σx2=1, σy2=4. Найти вероятности событий:

а) (Х<аx)(Y<ay); б) Y<X-5; в) (|X|<1)(|Y|<2)
Back to top