Кремер Н.Ш. Теория вероятностей и математическая статистика. №005.029, стр.221


Задана плотность вероятности φ(х) случайной величины X, принимающей только положительные значения. Найти плотность вероятности случайной величины Y, если: а); б); в); г); д).

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

Случайная величина X равномерно распределена в интервале (-π/2;π/2). Найти плотность вероятности случайной величины Y=SinX.

Случайная величина распределена по закону Релея с плотностью вероятности:

Найти закон распределения случайной величины

Случайная величина X распределена по закону Коши с плотностью вероятности:

Найти плотность вероятности обратной величины Y=1/Х.

Дискретная случайная величина X имеет ряд распределения:

xi -1 0 1 2
pi 0,2 0,1 0,3 0,4

Найти математическое ожидание и дисперсию случайной величины Y=2X.

Имеются две случайные величины X и Y, связанные соотношением Y=2-3Х. Числовые характеристики случайной величины X заданы аx=-1; D(X)=4. Найти: а) математическое ожидание и дисперсию случайной величины Y; б) ковариацию и коэффициент корреляции случайной величин Х и Y.

Случайная величина X задана плотностью вероятности φ(х)=CosX в интервале (0,π/2); вне этого интервала φ(х)=0. Найти математическое ожидание случайной величины Y=X2.

Случайная величина X распределена с постоянной плотностью вероятности в интервале (1;2) и нулевой плотностью вне этого интервала. Найти математическое ожидание и дисперсию случайной величины Y=1/Х.

Независимые случайные величины X, Y распределены по нормальным законам с параметрами ax=2, аy=-3, σx2=1, σy2=4. Найти вероятности событий:

а) (Х<аx)(Y<ay); б) Y<X-5; в) (|X|<1)(|Y|<2)

Имеются независимые случайные величины X, Y. Случайная величина X распределена по нормальному закону с параметрами ax=0, σx2=1/2. Случайная величина Y распределена равномерно на интервале (0;1). Найти выражения совместной плотности и функции распределения двумерной случайной величины (X,Y).

Задана совместная плотность двумерной случайной величины (Х,Y):

Найти функцию распределения F(x,y).

Найти совместную плотность двумерной случайной величины (Х,Y) и вероятность ее попадания в область D - прямоугольник, ограниченный прямыми х=1, х=2, у=3, у=5, если известна ее функция распределения:

Двумерная случайная величина (X,Y) распределена по закону

* в остальных случаях

Найти: а) постоянную С; б) плотности вероятности одномерных составляющих; в) их условные плотности; г) числовые характеристики аx, аy, D(X), D(Y), ρ.

Двумерная случайная величина (X,Y) распределена по закону

Найти: а) коэффициент А; б) вероятность попадания случайной величины (X,Y) в пределы квадрата, центр которого совпадает с началом координат, а стороны параллельны осям координат и имеют длину 2. Установить, являются ли величины X и Y зависимыми; найти φ1(x), φ2(y).

Поверхность распределения двумерной случайной величины (X,Y) представляет прямой круговой конус, основанием которого служит круг с центром в начале координат и с радиусом 1. Вне этого круга совместная плотность двумерной случайной величины (Х,Y) равна нулю. Найти выражения совместной плотности φ(x,y), плотностей вероятностей одномерных составляющих φ1(x), φ2(y), условных плотностей φx(y), φy(x) . Выяснить, являются ли случайные величины X и Y: зависимыми; коррелированными.

Back to top