Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №387, стр.127


Случайная величина X распределена равномерно в интервале (-π/2,π/2). Найти плотность распределения g(y) случайной величины Y=CosX.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Случайная величина X распределена нормально с математическим ожиданием, равным а, и среднеквадратическим отклонением, равным σ. Доказать, что линейная функция Y=АХ+В также распределена нормально, причем M(Y)=Аa+B, σ(Y) =|A|σ.

Задана плотность

нормально распределенной случайной величины X. Найти плотность распределения g(y) случайной величины Y=X2.

Задана плотность

нормально распределенной случайной величины X. Найти плотность распределения g(y) случайной величины Y=(1/2)X2.

Задана плотность распределения

Найти плотность распределения g(y) случайной величины Y=(1/4)X2.

Случайная величина X задана плотностью распределения f(x)=(1/2)Sinx в интервале (0,π); вне этого интервала f(x)=0. Найти математическое ожидание случайной величины Y=φ(x)=X2, определив предварительно плотность распределения g(y) величины Y.

Случайная величина X задана плотностью распределения f(x)=(1/2)Sinx в интервале (0,π); вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2, используя плотность распределения g(y).

Случайная величина X задана плотностью распределения f(x)=Cosx в интервале (0,π/2); вне этого интервала f(x)=0. Найти дисперсию функции Y=φ(x)=X2.

Back to top