Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №381, стр.124


Задана плотность распределения f(x) случайной величины X, возможные значения которой заключены в интервале (-∞;+∞). Найти плотность распределения g(y) случайной величины Y, если:

a) Y=X^2

б) Y=e^{-X^2}

в) Y=|X|

г) Y=CosX

д) Y=arctgX

e) Y=\frac{1}{1+X^2}

Скачать решение бесплатно Купить решение
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

В прямоугольной системе координат xOy из точки A(4;0) наудачу (под произвольным углом t) проведен луч, пересекающий ось Оу. Найти дифференциальную функцию g(y) распределения вероятностей ординаты у точки пересечения проведенного луча с осью Oy.

Случайная величина X распределена равномерно в интервале (0,π/2). Найти плотность распределения g(y) случайной величины Y=SinX.

Задана плотность распределения случайной величины X: f(x)=1/π в интервале (-π/2,π/2); вне этого интервала f(x)=0. Найти плотность распределения g(у) случайной величины Y=tgX.

Случайная величина X распределена равномерно в интервале (0,2π). Найти плотность распределения g(y) случайной величины Y=CosX.

Случайная величина X распределена равномерно в интервале (-π/2,π/2). Найти плотность распределения g(y) случайной величины Y=CosX.

Случайная величина X распределена нормально с математическим ожиданием, равным а, и среднеквадратическим отклонением, равным σ. Доказать, что линейная функция Y=АХ+В также распределена нормально, причем M(Y)=Аa+B, σ(Y) =|A|σ.

Задана плотность

нормально распределенной случайной величины X. Найти плотность распределения g(y) случайной величины Y=X2.

Back to top