Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №303, стр.104


Доказать, что для любой непрерывной случайной величины центральный момент первого порядка равен нулю.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Доказать, что обычный момент второго порядка

имеет наименьшее значение, если c=M(Х).

Случайная величина X задана плотностью распределения f(x) = 0,5х в интервале (0,2); вне этого интервала f(x)=0. Найти начальные и центральные моменты первого, второго, третьего и четвертого порядков.

Случайная величина X задана плотностью распределения f(x) = 2х в интервале (0,1); вне этого интервала f(x)=0. Найти начальные и центральные моменты первого, второго, третьего и четвертого порядков.

Дискретная случайная величина X задана законом распределения:

X 1 3 5
p 0,4 0,1 0,5
Найти закон распределения случайной величины Y=3X.

Дискретная случайная величина X задана законом распределения:

X 3 6 10
p 0,2 0,1 0,7
Найти закон распределения случайной величины Y=2X+1.

Дискретная случайная величина X задана законом распределения:

X -1 -2 1 2
p 0,3 0,1 0,2 0,4
Найти закон распределения случайной величины Y=X2.

Дискретная случайная величина X задана законом распределения:

X
p 0,2 0,7 0,1
Найти закон распределения случайной величины Y=SinX.

Back to top