Дискретная случайная величина Х задана рядом распределения:
xi | 1 | 2 | 3 | 4 | 5 |
pi | 0,2 | 0,3 | 0,3 | 0,1 | 0,1 |
Найти условную вероятность события X<5 при условии, что Х>2.
Другие задачи по теории вероятности
Случайные величины Х1, Х2 независимы и имеют одинаковое распределение:
xi | 0 | 1 | 2 | 3 |
pi | 1/4 | 1/4 | 1/4 | 1/4 |
а) Найти вероятность события (Х1+Х2) >2
б) Найти вероятность события
Распределение дискретной случайной величины Х задано формулой р(Х=к)=Ск2, где к=1,2,3,4,5.
Найти:
а) константу С;
б) вероятность события |Х - 2| ≤ 1.
Распределение дискретной случайной величины Х задано формулой , где k=0,1,2,....
Найти: а) константу С; б) вероятность р (Х ≤ 3).
Функция распределения случайной величины X имеет вид:
Найти вероятность того, что случайная величина примет значение в интервале [1;3].
По данным примера 3.12 найти плотность вероятности случайной величины X.
Функция задана в виде:
Найти: а) значение постоянной А, при которой функция будет плотностью вероятности некоторой случайной величины X; б) выражение функции распределения F(х); в) вычислить вероятность того, что случайная величина X примет значение на отрезке [2;3]; г) найти математическое ожидание и дисперсию случайной величины X.
Найти моду, медиану и математическое ожидание случайной величины X с плотностью вероятности .