Е.Г. Репина, Е.И. Суханова. Теория вероятностей и математическая статистика: Варианты контрольных работ. №12.4


 Детали, изготовленные автоматом, по размеру диаметра распределяются по нормальному закону. Известно, что математическое ожидание равно 4,8 см, а дисперсия равна 0,81 см2.

Найти: а) вероятность того, что диаметр наудачу взятой детали будет в пределах от 5,7 до 7,5 см;

б) границы, в которых следует ожидать размер диаметра детали, если вероятность невыхода за эти границы равна 0,9545.


Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

 Группа рабочих изготавливает одинаковую продукцию. Дан ряд распределения рабочих по числу изготавливаемых за смену деталей:

Число деталей 18 20 22 24 26
Число рабочих 5 6 10 4 5

Вычислить выборочные среднюю, размах вариации, моду, медиану, дисперсию, среднее квадратическое отклонение, коэффициент вариации.

Имеются выборочные данные о дневном сборе хлопка (Х, кг):

 Х  20-25  25-30  30-35  35-40  40-45
 Число сборщиков   8 18  42   20  12

 Вычислить выборочные среднюю, моду, медиану, дисперсию, среднее квадратическое отклонение, коэффициент вариации.


 Дано распределение времени простоя станка за смену (Х, мин):

 Х  20-30 30-40   40-50 50-60  60-70 
 Число станков  10 15   8  5  2

Вычислить выборочные среднюю, моду, медиану, дисперсию, среднее квадратическое отклонение, коэффициент вариации.


 В результате выборочного обследования получено распределение времени на выполнение технологической операции (Х, с) 20 рабочими:

 

 Х  25-30  30-35  35-40 40-45   45-50
 Число рабочих  3  8  4   3  2

Вычислить выборочные среднюю, моду, медиану, дисперсию, среднее квадратическое отклонение, коэффициент вариации.


 Дано распределение расхода сырья, идущего на изготовление одного изделия (Х, г):

 

 Х  380-390  390-400 400-410  410-420   420-430
 Число изделий  4 5

Вычислить выборочные среднюю, моду, медиану, дисперсию, среднее квадратическое отклонение, коэффициент вариации.


 Дано распределение расхода материала на изготовление одного изделия:

Расход материала, см 240-250 250-260  260-270 270-280 280-290 
 Число изделий

 Вычислить выборочные среднюю, моду, медиану, размах вариации, дисперсию, среднее квадратическое отклонение, коэффициент вариации.


 Имеются выборочные данные о дневном сборе урожая (Х, кг):

 

 xi   30  33  35  37  40
 Число работников   11  15  28  14  12

Вычислить выборочные среднюю, моду, медиану, размах вариации, дисперсию, среднее квадратическое отклонение, коэффициент вариации.


 Длина изготовляемой автоматом детали представляет собой случайную величину, распределенную по нормальному закону. Средняя длина детали равна 15 см, среднее квадратическое отклонение равно 0,2 см.

Найти вероятность брака, если допустимые размеры детали должны быть (150,3) см.

Какую точность длины изготавливаемой детали можно гарантировать с вероятностью 0,97?


 На автомате изготовляются заклепки. Диаметр их головок представляет собой случайную величину, распределенную по нормальному закону, имеет среднее значение, равное 2 мм, и дисперсию, равную 0,01 мм2.

Найти вероятность того, что диаметр головки заклепки будет от 2,1 до 2,3 мм.

Какие размеры диаметра головки заклепки можно гарантировать с вероятностью0,95?


 Диаметр подшипников, выпускаемых заводом, представляет случайную величину, распределенную по нормальному закону с математическим ожиданием 16 мм и дисперсией 0,16 мм2.

Найти вероятность брака при условии, что для диаметра подшипника разрешается допуск (0,7) мм.


 Завод изготавливает шарики для подшипников. Диаметр шарика является случайной величиной, распределенной по нормальному закону с математическим ожиданием 20 см и средним квадратическим отклонением 2 см.

В каких границах с вероятностью 0,9216 можно гарантировать размер диаметра шарика?


 Найти дисперсию случайной величины, распределенной по нормальному закону, если известно, что отклонение случайной величины от ее математического ожидания, не превосходящее 0,1, имеет место с вероятностью 0,7887.


 Вес отдельного батона хлеба данной партии есть случайная величина Х, описываемая нормальным законом распределения с математическим ожиданием М(Х)=500 г и средним квадратическим отклонением (Х)=8 г.

Определить вероятность того, что вес взятого наугад из данной партии батона:

а) будет в пределах от 496 до 508 г;

б) отклоняется от математического ожидание не более чем на 3,2 г.


 Автомат штампует пуговицы. Контролируется диаметр пуговицы - Х, который распределен по нормальному закону с математическим ожиданием 10 мм и средним квадратическим отклонением 0,1 мм.

Найти интервал, в котором заключен диаметр изготовленных пуговиц, если брак составляет 1%.


Back to top