Основные теоремы Задачи с решениями


  • Теоремы сложения и умножения.
  • Формула полной вероятности.
  • Формула Байеса.

Вероятность попадания в цель для первого стрелка – 0,8; второго – 0,7; третьего – 0,6. При одновременном выстреле всех трех имелось два попадания. Найти вероятность того, что третий стрелок попал в цель.

В первой урне 6 белых и 4 черных шара, во второй – 3 белых и 2 черных. Из первой извлекают три шара и шары того цвета, которых больше, опускают во вторую, после этого из второй извлекают 1 шар. Найти вероятность, что он белый.

Известны вероятности независимых событий A, B, C: P(A)=0,8, P(B)=0,5, P(C)=0,2. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдет два и только два события.

В сетке 10 мячей, из них 6 – новые. Для первой игры берут три, которые потом возвращают. Для второй снова берут 3. Найти вероятность того, что для второй игры взяли три старых мяча.

На двух станках производят детали, причем на втором в два раза больше, чем на первом. Вероятность брака на первом станке – 0,01; на втором – 0,02. Найти вероятность того, что произвольно взятая деталь бракованная.

Известны вероятности независимых событий A, B, C: P(A)=0,3, P(B)=0,8, P(C)=0,5. Определить вероятность того, что: а) произойдут два и только два из этих событий, б) произойдет не более одного события.

Имеется две партии изделий в 15 и 20 шт.; в первой два, во второй три бракованных. Одно изделие из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.

Из 20 стрелков шесть попадают в цель с вероятностью 0,8; десять – с вероятностью 0,6 и четыре с вероятностью 0,4. Наудачу выбранный стрелок попал в цель. К какой из групп он вероятнее всего принадлежит?

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,3, P(C)=0,6. Определить вероятность того, что: а) произойдут только события B и C, б) произойдет не более одного события.

Первое орудие попадает в цель с вероятностью 0,7, второе -0,8. Для поражения цели достаточно двух попаданий, а при одном попадании вероятность поражения цели 0,6. Какое-то орудие выстрелило дважды. Найти вероятность поражения цели.

Известны вероятности независимых событий A, B, C: P(A)=0,8, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) все три события одновременно не произойдут, б) произойдет одно и только одно из этих событий.

Вероятность безотказной работы блока 0,85. Для надежности устанавливают такой же резервный. Найти вероятность того, что вся система работает безотказно.

В коробке было 9 белых и 6 черных шара, два из которых потерялись. Первый наугад взятый шар оказался белым. Найти вероятность того, что потерялись два черных шара.

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,6, P(C)=0,4. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдет два и только два из этих событий.

Имеется две партии изделий в 12 и 18 шт.; в первой два, во второй три бракованных. Два изделия из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.

По воздушной цели производится стрельба из двух установок. Вероятность поражения цели первой установкой равна 0,85, второй – 0,9, а вероятность поражения цели двумя установками равна 1. Найти вероятность поражения цели, если первая установка срабатывает с вероятностью 0,8, а вторая – 0,7.

Известны вероятности независимых событий A, B, C: P(A)=0,7, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) произойдет одно и только одно из этих событий, б) произойдет не более двух событий.

В телеграфном сообщении «точка» и «тире» встречаются в соотношении три к двум. Известно, что искажаются 25% «точек» и 20% «тире». Найти вероятность того, что принят переданный сигнал, если принято «тире».

Счетчик регистрирует частицы трех типов – A, B, и C. Вероятность появления этих частиц P(A)=0,2, P(B)=0,5, P(C)=0,3. Частицы каждого из этих типов счетчик улавливает с вероятностями p1=0,8, p2=0,2, p3=0,4. Счетчик отметил частицу. Найти вероятность того, что это была частица типа B.

Известны вероятности независимых событий A, B, C: P(A)=0,4, P(B)=0,5, P(C)=0,7. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдут два и только два из этих событий.

Первое орудие попадает в цель с вероятностью 0,6, второе - 0,7. Для поражения цели достаточно двух попаданий, а при одном попадании вероятность поражения цели 0,8. Какое-то орудие выстрелило дважды. Найти вероятность поражения цели.

Вероятность попадания в цель для первого стрелка – 0,8; второго – 0,7; третьего – 0,6. При одновременном выстреле всех трех имелось одно попадание. Найти вероятность того, что второй стрелок промахнулся.

Некто нашел чужую пластиковую карточку банкомата. Найти вероятность того, что двух попыток, предоставляемых банкоматом, хватит для того, чтобы отгадать неизвестный ему четырехзначный код.

Средний процент невозвращения в срок кредита, выдаваемого банком, составляет 5%. Найти вероятность того, что при выдаче банком 100 кредитов проблемы с возвратом денег возникнут не менее чем в двух случаях. Предполагается, что различные кредиты выдаются и возвращаются независимо друг от друга.

В торговую фирму поступают телевизоры от трех фирм изготовителей в соотношении 2:5:3. Телевизоры, поступающие от первой фирмы, требуют ремонта в течение гарантийного срока в 15% случаев, от второй и третьей — соответственно в 8% и 6% случаев. Найти вероятность того, что проданный телевизор потребует ремонта в течение гарантийного срока.

После осмотра больного врач считает, что равновозможно одно из двух заболеваний C или D. Для уточнения диагноза больного направляют на анализ, исход которого дает положительную реакцию при заболевании C в 30 процентах случаев, а при заболевании D — в 20 процентах случаев. Анализ дал положительную реакцию. Какое заболевание становится более вероятным?

Вакансия, предлагаемая безработному биржей труда, удовлетворяет его с вероятностью 0,01. Сколько нужно обслужить безработных, чтобы вероятность того, что хотя бы один из них найдет работу, была бы не ниже 0,95?

Вероятность рождения мальчика равна 0,515. На семейном совете постановили, что дети в семье будут рождаться до появления второго мальчика. Найти вероятность того, что в семье будет четверо детей.

Back to top