Основные теоремы Задачи с решениями


  • Теоремы сложения и умножения.
  • Формула полной вероятности.
  • Формула Байеса.

Вероятность брака детали равна 0,05. После изготовления деталь проходит автоматический контроль, в результате которого брак обнаруживается с вероятностью 0,95. Кроме того, при автоматическом контроле деталь может быть забракована с вероятностью 0,01. Найти вероятность того, что очередная изготовленная деталь будет забракована. Найти вероятность того, что забракованная деталь исправна.

Каждая выпущенная торпеда попадает в корабль в данной ситуации с вероятностью 0,6. Вероятность потопления корабля при одном попадании торпеды равна 0,5, при двух - 0,8, при трех и более - 1. По кораблю выпущено 4 торпеды. Найти вероятность его потопления.

Опрос показал, что из 26 студентов, обучающихся в первой группе 18 ростовчан, а остальные живут в других городах, во второй группе 17 студентов -ростовчан, а остальные 10 живут в других городах. Из второй группы в первую был переведен один студент. После перевода один студент первой группы был вызван в деканат, и оказалось, что этот студент ростовчанин. Какова вероятность того, что из второй группы в первую был переведен студент-ростовчанин?

Чтобы доказать существование телепатии, был проведен эксперимент: «нейтральный» человек – участник эксперимента бросил монету 10 раз. 450 человек должны были угадать, что выпало – орел или решка, делая это независимо друг от друга. Если кто-то угадал 9 или 10 результатов, то можно было говорить о случае телепатии. Какова вероятность того, что хотя бы один случай произойдет?

Zum Beweis der Existenz von Telepathie, war ein Experiment durchgeführt: "neutralen" Person - das Experiment eine Münze werfen 10 mal. 450 Menschen mussten erraten, was fiel aus - Kopf oder Zahl, so dass es unabhängig von einander. Wenn jemand erraten 9 oder 10 Ergebnisse war es möglich, über den Fall von Telepathie sprechen. Was ist die Wahrscheinlichkeit, dass mindestens ein Vorfall passiert?

В 1-ой урне - 39 белых шаров, 31 зеленый и 30 красных шаров, во 2-ой урне - 16 белых и 28 красных шаров. Из 1-ой урны вытащили 1 шар и переложили во 2-ю, затем из 2-ой урны вынули 2 шара. Найти: 1) Вероятность следующих событий: а) A - оба шара красные, б) B - оба шара белые, в) C - разного цвета. 2) Если известно, что вытащили 1 красный и 1 белый шары переоценить вероятность, что во 2-ю переложили а) белый, б) красный, в) зеленый.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут белый шар. Какова вероятность того, что сумма очков была меньше 10? Б1=6, Ч1=5, Б2=7, Ч2=9.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=8, Ч1=4, Б2=6, Ч2=9.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут белый шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=7, Ч1=6, Б2=5, Ч2=9.

Узел автомашины состоит из 4 деталей. Вероятность выхода этих деталей из строя соответственно равна: p1=0,02, p2=0,03, p3=0,04, p4=0,05. Узел выходит из строя, если выходит из строя хотя бы одна деталь. Найти вероятность того, что узел не выйдет из строя, если детали выходят из строя независимо друг от друга.

Вероятность того, что клиент банка не вернет заем в период экономического роста, равна 1/21, а в период экономического кризиса — 1/5. Предположим, что вероятность того, что начнется период экономического роста, равна 0,65. Чему равна вероятность того, что случайно выбранный клиент банка не вернет полученный кредит?

Рабочий обслуживает 4 автомата. Вероятность брака для первого автомата равна 0,03, для второго – 0,02, для третьего – 0,04, для четвертого – 0,02. Производительность первого автомата в три раза больше, чем второго, третьего в два раза меньше, чем второго, а четвертого равна производительности первого автомата. Изготовленные детали попадают на общий конвейер. Определить вероятность того, что взятая наудачу деталь будет годной.

Два охотника одновременно стреляют в цель. Известно, что вероятность попадания у первого охотника равна 0,2, а у второго – 0,6. В результате первого залпа оказалось одно попадание в цель. Чему равна вероятность того, что промахнулся первый охотник.

Имеется десять одинаковых урн, из которых в девяти находятся по 2 белых и 2 черных шара, а в одной – 5 белых и 1 черный шар. Из взятой наугад урны извлечен белый шар. Какова вероятность того, что шар извлечен из урны, содержавшей 5 белых шаров?

В первом ящике 7 белых и 5 черных шаров, а во втором - 3 белых и 2 черных. Из первого ящика во второй наугад перекладывают 2 шара, а потом из второго извлекают 3 шара. Найти вероятность того, что среди них окажется 3 черных.

В первой урне содержится 5 зеленых и 4 голубых шаров, во второй – 3 зеленых и 6 голубых шаров. Из первой урны во вторую наудачу перекладывают 2 шара. После этого из второй урны наугад извлекают 3 шара. Найти вероятность того, что будут извлечены 2 голубых и 1 зеленый шар.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=5, Ч1=6, Б2=9, Ч2=6.

В урне содержится 7 белых, 5 черных и 8 красных шаров. Шары выбираются наугад, причем белый или черный шар в урну не возвращается, а извлеченный из урны красный шар после проверки его цвета укладывается назад в урну. Найти вероятность того, что среди первых двух последовательно вынутых шаров будет один черный.

В тире имеется пять ружей, вероятности попадания из которых равны соответственно 0,5, 0,6, 0,7, 0,8 и 0,9. Определить вероятность попадания при одном выстреле, если стрелок берет одно из ружей наудачу.

В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды A в каждой партии равна 0,4. Определить вероятность того, что в матче победит команда A, если известно, что она проиграла вторую партию.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=7, Ч1=5, Б2=9, Ч2=6.

В волейбольном матче игра происходит до тех пор, пока одна из команд не выиграет трех партий. Вероятность победы команды A в каждой партии равна 0,4. Определить вероятность того, что команда Б победит со счетом 3:0.

Для контроля продукции из 3 партий деталей взята для испытания 1 деталь. Как велика вероятность обнаружения бракованной продукции, если в одной партии 2/3 деталей бракованные, а в двух других — все доброкачественные?

Стрелок производит восемь выстрелов по мишени, состоящей из центральной части, за попадание в которую он получает 2 очка, и остальной части, за попадание в которую стрелок получает 1 очко. Определить вероятность того, что стрелок наберет 14 очков, если вероятность попадания в центральную часть круга равна 0,1, а в остальную часть — 0,3.

2 орудия стреляют по двум целям. Каждое орудие выбирает себе цель случайно и независимо от другого. Каждое орудие попадает в цель с вероятностью р. Одна цель оказалась поражена, другая нет. Найти вероятность того, что орудия стреляли по разным целям.

В первой корзине 8 чёрных шаров и 2 белых. Во второй корзине 6 чёрных и 4 белых. В третью корзину положили 2 шара из первой корзины и 2 шара из второй. Какая вероятность того, что в третьей корзине оказалось 3 белых.

Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны 0,4, 0,3, 0,5.

Есть 4 шестигранных кубика. На трех из них окрашены белым 4 грани, а на четвертом кубике всего одна грань белая. Наудачу выбранный кубик подбрасывается пять раз. Найти вероятность того, что был выбран четвертый кубик, если при пяти подбрасываниях белая грань выпала ровно один раз.

Три стрелка выстрелили по одному разу по мишени. Вероятности попадания при одном выстреле у них соответственно равны 0,75, 0,95, 0,8. Найти вероятность, что в мишени будет: а) ровно одно попадание; б) не менее одного попадания.

Три стрелка выстрелили по одному разу по мишени. Вероятности попадания при одном выстреле у них соответственно равны 0,8, 0,9, 0,6. Найти вероятность, что в мишени будет: а) ровно одно попадание; б) не менее одного попадания.

Завод получает комплектующие от трех поставщиков. Их доли в общем объеме составляют соответственно 40, 20, 40 процентов. Доля изделий высшего качества от числа поставляемых у них соответственно равна 65, 75, 90 процентов. Найти: а) процент поставок высшего качества от всего объема поставок, б) доли поставщиков среди изделий высшего качества?

Вероятность того, что потребитель увидит рекламу определенного продукта по одному из трех телевизионных каналов, равна 0,05. Предполагается, что эти события независимы в совокупности. Чему равна вероятность того, что потребитель увидит рекламу а) по всем трем каналам; б) хотя бы по одному из этих каналов?

Агент по недвижимости пытается продать участок земли под застройку. Он полагает, что участок будет продан в течение полугода с вероятностью 0,9, если экономическая ситуация в регионе не будет ухудшаться. Если же экономическая ситуация будет ухудшаться, то вероятность продать участок составит 0,5. Экономист, консультирующий агента полагает, что с вероятностью, равной 0,7, экономическая ситуация в регионе в течение ближайшего полугода будет ухудшаться. Чему равна вероятность того, что участок будет продан в течение полугода?

В группе 21 студент, в том числе 5 отличников, 10 хорошистов и 6 занимающихся слабо. На предстоящих экзаменах отличники могут получить только отличные оценки, хорошисты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся студенты получают с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. Для сдачи экзамена приглашается наугад один студент. Найти вероятность того, что он получит, хорошую или отличную оценку.

В группе две трети студентов – юноши. Вероятность опоздать на занятия для юноши равна 0,1, для девушки - 0,3. Наугад выбранный из списка студент опоздал на занятия. Что вероятнее: это юноша или девушка?

Back to top