- Формула Бернулли.
- Формула Пуассона.
- Интегральная и локальная теоремы Муавра-Лапласа.
- Наивероятнейшее число появлений события в независимых испытаниях.
- Полиномиальная схема.
- Производящая функция.
Отдел технического контроля проверяет партию из 10 деталей. Вероятность того, что деталь стандартна, равна 0,75. Найти наивероятнейшее число деталей, которые будут признаны стандартными.
Товаровед осматривает 24 образца товаров. Вероятность того, что каждый из образцов будет признан годным к продаже, равна 0,6. Найти наивероятнейшее число образцов, которые товаровед признает годными к продаже.
Найти наивероятнейшее число правильно набитых перфораторщицей перфокарт среди 19 перфокарт, если вероятность того, что перфокарта набита неверно, равна 0,1.
Два равносильных противника играют в шахматы. Найти наивероятнейшее число выигрышей для любого шахматиста, если будет сыграно 2N результативных (без ничьих) партий.
Два стрелка стреляют по мишени. Вероятность промаха при одном выстреле для первого стрелка равна 0,2, а для второго - 0,4. Найти наивероятнейшее число залпов, при которых не будет ни одного попадания в мишень, если стрелки произведут 25 залпов.
Два стрелка одновременно стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,8, а для второго - 0,6. Найти наивероятнейшее число залпов, при которых оба стрелка попадут в мишень, если будет произведено 15 залпов.
Сколько надо произвести независимых испытаний с вероятностью появления события в каждом испытании, равной 0,4, чтобы наивероятнейшее число появлений события в этих испытаниях было равно 25?
Вероятность появления события в каждом из независимых испытаний равна 0,3. Найти число испытаний n, при котором наивероятнейшее число появлений события в этих испытаниях будет равно 30.
Вероятность появления события в каждом из независимых испытаний равна 0,7. Найти число испытаний n, при котором наивероятнейшее число появлений события в этих испытаниях будет равно 20.
Чему равна вероятность p наступления события в каждом из 49 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 30?
Чему равна вероятность p наступления события в каждом из 39 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 25?
Батарея произвела шесть выстрелов по объекту. Вероятность попадания в объект при одном выстреле равна 0,3. Найти: а) наивероятнейшее число попаданий; б) вероятность наивероятнейшего числа попаданий; в) вероятность того, что объект будет разрушен, если для этого достаточно хотя бы двух попаданий
Прибор состоит из пяти независимо работающих элементов. Вероятность отказа элемента в момент включения прибора равна 0,2. Найти: а) наивероятнейшее число отказавших элементов; б) вероятность наивероятнейшего числа отказавших элементов; в) вероятность отказа прибора, если для этого достаточно, чтобы отказали хотя бы четыре элемента.
Устройство состоит из трех независимо работающих элементов. Вероятности безотказной работы элементов (за время t) соответственно равны: р1=0,7; р2=0,8; р3=0,9. Найти вероятности того, что за время t будут работать безотказно: а) все элементы; б) два элемента; в) один элемент; г) ни один из элементов.
Из двух орудий произведен залп по цели. Вероятность попадания в цель для первого орудия равна 0,8, для второго - 0,9. Найти вероятности следующих событий: а) два попадания в цель; б) одно попадание; в) ни одного попадания; г) не менее одного попадания.
Из трех орудий произведен залп по цели. Вероятность попадания в цель для первого орудия равна 0,8, для второго - 0,85, для третьего - 0,9. Найти вероятности следующих событий: а) три попадания в цель; б) два попадания; в) одно попадание; г) ни одного попадания; д) хотя бы одно попадание.
Четыре элемента вычислительного устройства работают независимо. Вероятность отказа первого элемента за время t равна 0,2, второго - 0,25, третьего - 0,3, четвертого - 0,4. Найти вероятность того, что за время t откажут: а) 4 элемента; б) 3 элемента; в) 2 элемента; г) 1 элемент; д) ни один элемент; е) не более двух элементов.
Две батареи по 3 орудия каждая производят залп по цели. Цель будет поражена, если каждая из батарей даст не менее двух попаданий. Вероятности попадания в цель орудиями первой батареи равны 0,4; 0,5; 0,6, второй - 0,5; 0,6; 0,7. Найти вероятность поражения цели при одном залпе из двух батарей.
Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,8. Найти вероятность того, что в 1600 испытаниях событие наступит 1200 раз.
Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит 5 раз.
Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,8. Найти вероятность того, что в 125 испытаниях событие наступит не менее 75 раз и не более 90 раз.
Вероятность изготовления на автоматическом станке стандартной детали равна 0,8. Найти вероятность возможного числа появления бракованных деталей среди 5 отобранных.
По данным примера 2.1 найти наивероятнейшее число появления бракованных деталей из 5 отобранных и вероятность этого числа.
Сколько раз необходимо подбросить игральную кость, чтобы наивероятнейшее выпадение тройки было равно 10?
На факультете насчитывается 1825 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно четырех студентов факультета?
В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что из 400 семей 300 имеют холодильники.
По данным примера 2.5 вычислить вероятность того, что от 300 до 360 (включительно) семей из 400 имеют холодильники.
По данным примера 2.5 вычислить вероятность того, что от 280 до 360 семей из 400 имеют холодильники.
По статистическим данным в среднем 87% новорожденных доживают до 50 лет.
1. Найти вероятность того, что из 1000 новорожденных доля (частость) доживших до 50 лет будет: а) заключена в пределах от 0,9 до 0,95; б) будет отличаться от вероятности этого события не более, чем на 0,04 (по абсолютной величине).
2. При каком числе новорожденных с надежностью 0,95 доля доживших до 50 лет будет заключена в границах от 0,86 до 0,88?
В среднем 20% пакетов акций на аукционах продаются по первоначально заявленной цене. Найти вероятность того, что из 9 пакетов акций в результате торгов по первоначально заявленной цене:
1) не будут проданы 5 пакетов;
2) будет продано: а) менее 2-х пакетов; б) не более 2-х пакетов; в) хотя бы 2 пакета; г) наивероятнейшее число пакетов.
Завод отправил на базу 10000 стандартный изделий. Среднее число изделий, повреждаемых при транспортировке, составляет 0,02%. Найти вероятность того, что из 10000 изделий:
1) будет повреждено: а) 3; б) по крайней мере 3;
2) не будет повреждено: а) 9997; б) хотя бы 9997.
По результатам проверок налоговыми инспекциями установлено, что в среднем каждое второе малое предприятие региона имеет нарушение финансовой дисциплины. Найти вероятность того, что из 1000 зарегистрированных в регионе малых предприятий имеют нарушение финансовой дисциплины: а) 480 предприятий; б) наивероятнейшее число предприятий; в) не менее 480; г) от 480 до 520.
В страховой компании 10 тыс. клиентов. Страховой взнос каждого клиента составляет 500 руб. При наступлении страхового случая, вероятность которого по имеющимся данным и оценкам экспертов можно считать равной р=0,005, страховая компания обязана выплатить клиенту страховую сумму размером 50 тыс. руб. На какую прибыль может рассчитывать страховая компания с надежностью 0,95?
Человек, принадлежащий к определенной группе населения, с вероятностью 0,2 оказывается брюнетом с вероятностью 0,3 — шатеном, с вероятностью 0,4 — блондином, с вероятностью 0,1 — рыжим. Найти вероятность того, что в составе выбранной наудачу группы из 8 человек: а) равное число брюнетов, шатенов, блондинов и рыжих; б) число блондинов втрое больше числа рыжих.
Вероятность малому предприятию быть банкротом за время t равна 0,2. Найти вероятность того, что из шести малых предприятий за время t сохранятся: а) два; б) более двух.