Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №159, стр.050


Устройство состоит из трех независимо работающих элементов. Вероятности безотказной работы элементов (за время t) соответственно равны: р1=0,7; р2=0,8; р3=0,9. Найти вероятности того, что за время t будут работать безотказно: а) все элементы; б) два элемента; в) один элемент; г) ни один из элементов.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Из двух орудий произведен залп по цели. Вероятность попадания в цель для первого орудия равна 0,8, для второго - 0,9. Найти вероятности следующих событий: а) два попадания в цель; б) одно попадание; в) ни одного попадания; г) не менее одного попадания.

Из трех орудий произведен залп по цели. Вероятность попадания в цель для первого орудия равна 0,8, для второго - 0,85, для третьего - 0,9. Найти вероятности следующих событий: а) три попадания в цель; б) два попадания; в) одно попадание; г) ни одного попадания; д) хотя бы одно попадание.

Четыре элемента вычислительного устройства работают независимо. Вероятность отказа первого элемента за время t равна 0,2, второго - 0,25, третьего - 0,3, четвертого - 0,4. Найти вероятность того, что за время t откажут: а) 4 элемента; б) 3 элемента; в) 2 элемента; г) 1 элемент; д) ни один элемент; е) не более двух элементов.

Две батареи по 3 орудия каждая производят залп по цели. Цель будет поражена, если каждая из батарей даст не менее двух попаданий. Вероятности попадания в цель орудиями первой батареи равны 0,4; 0,5; 0,6, второй - 0,5; 0,6; 0,7. Найти вероятность поражения цели при одном залпе из двух батарей.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.

В партии 10% нестандартных деталей. Наудачу отобраны четыре детали. Написать биномиальный закон распределения дискретной случайной величины X - числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.

Написать биномиальный закон распределения дискретной случайной величины X - числа появлений «герба» при двух бросаниях монеты.

Back to top