Две батареи по 3 орудия каждая производят залп по цели. Цель будет поражена, если каждая из батарей даст не менее двух попаданий. Вероятности попадания в цель орудиями первой батареи равны 0,4; 0,5; 0,6, второй - 0,5; 0,6; 0,7. Найти вероятность поражения цели при одном залпе из двух батарей.
Другие задачи по теории вероятности
Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.
В партии 10% нестандартных деталей. Наудачу отобраны четыре детали. Написать биномиальный закон распределения дискретной случайной величины X - числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.
Написать биномиальный закон распределения дискретной случайной величины X - числа появлений «герба» при двух бросаниях монеты.
Две игральные кости одновременно бросают два раза. Написать биномиальный закон распределения дискретной случайной величины X - числа выпадений четного числа очков на двух игральных костях.
В партии из 10 деталей имеется 8 стандартных. Наудачу отобраны две детали. Составить закон распределения числа стандартных деталей среди отобранных.
В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить закон распределения дискретной случайной величины X - числа стандартных деталей среди отобранных.
После ответа студента на вопросы экзаменационного билета экзаменатор задает студенту дополнительные вопросы. Преподаватель прекращает задавать дополнительные вопросы, как только студент обнаруживает незнание заданного вопроса. Вероятность того, что студент ответит на любой заданный дополнительный вопрос, равна 0,9. Требуется: а) составить закон распределения случайной дискретной величины X - числа дополнительных вопросов, которые задаст преподаватель студенту; б) найти наивероятнейшее число k0 заданных студенту дополнительных вопросов.
Четыре элемента вычислительного устройства работают независимо. Вероятность отказа первого элемента за время t равна 0,2, второго - 0,25, третьего - 0,3, четвертого - 0,4. Найти вероятность того, что за время t откажут: а) 4 элемента; б) 3 элемента; в) 2 элемента; г) 1 элемент; д) ни один элемент; е) не более двух элементов.
Из трех орудий произведен залп по цели. Вероятность попадания в цель для первого орудия равна 0,8, для второго - 0,85, для третьего - 0,9. Найти вероятности следующих событий: а) три попадания в цель; б) два попадания; в) одно попадание; г) ни одного попадания; д) хотя бы одно попадание.
Из двух орудий произведен залп по цели. Вероятность попадания в цель для первого орудия равна 0,8, для второго - 0,9. Найти вероятности следующих событий: а) два попадания в цель; б) одно попадание; в) ни одного попадания; г) не менее одного попадания.
Устройство состоит из трех независимо работающих элементов. Вероятности безотказной работы элементов (за время t) соответственно равны: р1=0,7; р2=0,8; р3=0,9. Найти вероятности того, что за время t будут работать безотказно: а) все элементы; б) два элемента; в) один элемент; г) ни один из элементов.
Прибор состоит из пяти независимо работающих элементов. Вероятность отказа элемента в момент включения прибора равна 0,2. Найти: а) наивероятнейшее число отказавших элементов; б) вероятность наивероятнейшего числа отказавших элементов; в) вероятность отказа прибора, если для этого достаточно, чтобы отказали хотя бы четыре элемента.
Батарея произвела шесть выстрелов по объекту. Вероятность попадания в объект при одном выстреле равна 0,3. Найти: а) наивероятнейшее число попаданий; б) вероятность наивероятнейшего числа попаданий; в) вероятность того, что объект будет разрушен, если для этого достаточно хотя бы двух попаданий
Чему равна вероятность p наступления события в каждом из 39 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 25?
Загружаем...