В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить закон распределения дискретной случайной величины X - числа стандартных деталей среди отобранных.
Другие задачи по теории вероятности
После ответа студента на вопросы экзаменационного билета экзаменатор задает студенту дополнительные вопросы. Преподаватель прекращает задавать дополнительные вопросы, как только студент обнаруживает незнание заданного вопроса. Вероятность того, что студент ответит на любой заданный дополнительный вопрос, равна 0,9. Требуется: а) составить закон распределения случайной дискретной величины X - числа дополнительных вопросов, которые задаст преподаватель студенту; б) найти наивероятнейшее число k0 заданных студенту дополнительных вопросов.
Вероятность того, что стрелок попадет в мишень при одном выстреле, равна 0,8. Стрелку выдаются патроны до тех пор, пока он не промахнется. Требуется: а) составить закон распределения дискретной случайной величины X - числа патронов, выданных стрелку; б) найти наивероятнейшее число выданных стрелку патронов.
Из двух орудий поочередно ведется стрельба по цели до первого попадания одним из орудий. Вероятность попадания в цель первым орудием равна 0,3, вторым - 0,7. Начинает стрельбу первое орудие. Составить законы распределения дискретных случайных величин X и Y - числа израсходованных снарядов соответственно первым и вторым орудием.
Два бомбардировщика поочередно сбрасывают бомбы на цель до первого попадания. Вероятность попадания в цель первым бомбардировщиком равна 0,7, вторым - 0,8. Вначале сбрасывает бомбы первый бомбардировщик. Составить первые четыре члена закона распределения дискретной случайной величины X - числа сброшенных бомб обоими бомбардировщиками (т.е. ограничиться возможными значениями X, равными 1, 2, 3 и 4).
Учебник издан тиражом 100000 экземпляров. Вероятность того, что учебник сброшюрован неправильно, равна 0,0001. Найти вероятность того, что тираж содержит ровно пять бракованных книг.
Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течение времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной, равна 0,01. Найти вероятность того, что среди 200 деталей окажется ровно четыре бракованных.
В партии из 10 деталей имеется 8 стандартных. Наудачу отобраны две детали. Составить закон распределения числа стандартных деталей среди отобранных.
Две игральные кости одновременно бросают два раза. Написать биномиальный закон распределения дискретной случайной величины X - числа выпадений четного числа очков на двух игральных костях.
Написать биномиальный закон распределения дискретной случайной величины X - числа появлений «герба» при двух бросаниях монеты.
В партии 10% нестандартных деталей. Наудачу отобраны четыре детали. Написать биномиальный закон распределения дискретной случайной величины X - числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.
Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.
Две батареи по 3 орудия каждая производят залп по цели. Цель будет поражена, если каждая из батарей даст не менее двух попаданий. Вероятности попадания в цель орудиями первой батареи равны 0,4; 0,5; 0,6, второй - 0,5; 0,6; 0,7. Найти вероятность поражения цели при одном залпе из двух батарей.
Четыре элемента вычислительного устройства работают независимо. Вероятность отказа первого элемента за время t равна 0,2, второго - 0,25, третьего - 0,3, четвертого - 0,4. Найти вероятность того, что за время t откажут: а) 4 элемента; б) 3 элемента; в) 2 элемента; г) 1 элемент; д) ни один элемент; е) не более двух элементов.
Загружаем...