Имеется два набора деталей, в первом все стандартные, во втором 1/4 – нестандартных. Деталь, взятая из одного набора, – стандартна. Найти вероятность того, что вторая деталь, взятая из того же набора стандартна при условии возвращения первой детали.
Другие задачи по теории вероятности
Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,4, P(C)=0,3. Определить вероятность того, что: а) произойдет, по крайней мере, два из этих событий, б) ни одного события не произойдет.
Три последовательно соединенных элемента выходят из строя с вероятностями P1=0,3; P2=0,4, P3=0,6. Найти вероятность, что в цепи будет разрыв.
Четыре стрелка одновременно стреляют по мишени. Вероятность попадания первого – 0,4; второго – 0,6; третьего – 0,7; четвертого – 0,5. Какова вероятность, что промахнулся первый?
Имеется три коробки с шарами. В первых двух по 2 черных и 2 белых шара, а в третьей – 5 белых и 1 чёрный. Из коробки, взятой наугад, извлечен белый шар. Найти вероятность того, что это была третья коробка.
Известны вероятности независимых событий A, B, C: P(A)=0,4, P(B)=0,6, P(C)=0,8. Определить вероятность того, что: а) произойдет одно и только одно из этих событий, б) произойдет не более двух из этих событий.
Вероятность того, что произойдет одно и только одно событие из двух 0,44. Какова вероятность второго события, если вероятность первого – 0,8.
Вероятность попадания в цель для первого стрелка – 0,8; второго – 0,7; третьего – 0,6. При одновременном выстреле всех трех имелось два попадания. Найти вероятность того, что третий стрелок попал в цель.