Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №1.11.2


Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,7, P(C)=0,6. Определить вероятность того, что: а) произойдет, по крайней мере, одно из этих событий, б) произойдет только событие B.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Сколько нужно взять чисел из таблицы случайных чисел, чтобы с вероятностью не меньшей 0,9 среди них было бы хотя бы одно четное?

Известно, что 90% продукции - стандартно. Упрощенный контроль признает годной стандартную продукцию с вероятностью 0,8 и нестандартную с вероятностью 0,3. Найти вероятность того, что признанное годным изделие – нестандартно.

Имеется два набора деталей, в первом все стандартные, во втором 1/4 – нестандартных. Деталь, взятая из одного набора, – стандартна. Найти вероятность того, что вторая деталь, взятая из того же набора стандартна при условии возвращения первой детали.

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,4, P(C)=0,3. Определить вероятность того, что: а) произойдет, по крайней мере, два из этих событий, б) ни одного события не произойдет.

Три последовательно соединенных элемента выходят из строя с вероятностями P1=0,3; P2=0,4, P3=0,6. Найти вероятность, что в цепи будет разрыв.

Четыре стрелка одновременно стреляют по мишени. Вероятность попадания первого – 0,4; второго – 0,6; третьего – 0,7; четвертого – 0,5. Какова вероятность, что промахнулся первый?

Имеется три коробки с шарами. В первых двух по 2 черных и 2 белых шара, а в третьей – 5 белых и 1 чёрный. Из коробки, взятой наугад, извлечен белый шар. Найти вероятность того, что это была третья коробка.

Back to top