Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №1.05.2


Известны вероятности независимых событий A, B, C: P(A)=0,3, P(B)=0,8, P(C)=0,5. Определить вероятность того, что: а) произойдут ровно два из этих событий, б) произойдет не более одного из этих событий.

Скачать решение бесплатно Купить решение
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Изделие стандартно с вероятностью P=0,9. Найти вероятность того, что из трех изделий два стандартно.

На двух станках производят детали, причем на втором в два раза больше, чем на первом. Вероятность брака на первом станке – 0,1; на втором – 0,2. Найти вероятность того, что произвольно взятая деталь бракованная.

Из 20 стрелков шесть попадают в цель с вероятностью 0,8; девять – с вероятностью 0,5 и пять с вероятностью 0,2. Наудачу выбранный стрелок попал в цель. К какой из групп он вероятнее всего принадлежит?

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,3, P(C)=0,6. Определить вероятность того, что: а) произойдут только события A и B, б) произойдет не более двух событий.

Вероятность попадания в цель для первого стрелка – 0,6; второго – 0,7; третьего – 0,8. Найти вероятность того, что будет хотя бы два попадания.

Три стрелка стреляют в цель с вероятностями 0,7; 0,4; 0,3. При их одновременном выстреле имеется два попадания. Что вероятнее: попал третий стрелок в цель или промахнулся?

Из 10 изделий число бракованных (0,1,2) равновероятно. Зная, что 5 взятых наугад изделий годные, найти вероятность того, что оставшиеся тоже годные.

Back to top