Известны вероятности независимых событий A, B, C: P(A)=0,4, P(B)=0,6, P(C)=0,8. Определить вероятность того, что: а) произойдет одно и только одно из этих событий, б) произойдет не более двух событий.
Другие задачи по теории вероятности
Вероятность, что первый станок исправен – 0,9; второй – 0,8; третий - 0,85. Найти вероятность того, что хотя бы один неисправен.
Вероятность попадания в цель для первого стрелка – 0,8; второго – 0,7; третьего – 0,6. При одновременном выстреле всех трех имелось одно попадание. Найти вероятность того, что попал третий стрелок.
В первой коробке 3 белых и 4 черных шара, во второй – 2 белых и 3 черных. Из первой во вторую переложили два шара. Затем из второй коробки взяли шар, оказавшийся белым. Какой состав переложенных шаров наиболее вероятен?
Известны вероятности независимых событий A, B, C: P(A)=0,3, P(B)=0,5, P(C)=0,2. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдет два и только два события.
В сетке 9 мячей, из них 6 – новые. Для первой игры берут три, которые потом возвращают. Для второй снова берут 3. Найти вероятность того, что для второй игры взяли три новых мяча.
Радиолампа может принадлежать к одной из трех партий с вероятностями 0,25, 0,35, 0,4. Вероятности работы в течение годы равны соответственно 0,2, 0,1, 0,4. Найти вероятность того, что лампа проработает в течение года.
Известны вероятности независимых событий A, B, C: P(A)=0,3, P(B)=0,8, P(C)=0,5. Определить вероятность того, что: а) произойдут ровно два из этих событий, б) произойдет не более одного из этих событий.
Имеется три коробки с шарами. В первых двух по 2 черных и 2 белых шара, а в третьей – 5 белых и 1 чёрный. Из коробки, взятой наугад, извлечен белый шар. Найти вероятность того, что это была третья коробка.
Четыре стрелка одновременно стреляют по мишени. Вероятность попадания первого – 0,4; второго – 0,6; третьего – 0,7; четвертого – 0,5. Какова вероятность, что промахнулся первый?
Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,7, P(C)=0,3. Определить вероятность того, что: а) произойдет не более двух событий, б) произойдет одно и только одно из этих событий.
Имеется 4 радиолокатора. Вероятность обнаружить цель для первого – 0,86; для второго – 0,9; для третьего – 0,92; для четвертого – 0,95. Включен один из них. Какова вероятность обнаружить цель?
Известно, что 80% продукции – стандартно. Упрощенный контроль признает годной стандартную продукцию с вероятностью 0,9 и нестандартную с вероятностью 0,3. Найти вероятность того, что признанное годным изделие – стандартно.
Вероятность попадания в цель: первого стрелка – 0,6; второго – 0,7; третьего - 0,8. Найти вероятность хотя бы одного попадания в цель при одновременном выстреле всех трех.
Известны вероятности независимых событий А, В, С: P(A)=0,5; P(B)=0,4; P(C)=0,6. Определить вероятность того, что а) произойдет по крайней мере одно из этих событий, б) произойдет не более двух событий.
Загружаем...