По данным примера 3.15 найти квантильную точку х0,1 и 30%-ную точку случайной величины X.
Другие задачи по теории вероятности
Дана функция распределения случайной величины X:
а) Найти плотность вероятности φ(х);
б) построить графики φ(х) и F(х);
в) убедиться в том, что X - непрерывная случайная величина;
г) найти вероятности P(Х=1), P(Х<1), P(1<Х<2) (две последние вероятности показать на графиках φ(х) и F(x);
д) вычислить математическое ожидание M(Х), дисперсию D(Х), моду М0(Х) и медиану Мe(Х).
Случайная величина Х, сосредоточенная на интервале [-1;3], задана функцией распределения . Найти вероятность попадания случайной величины Х в интервал [0;2]. Построить график функции F(x).
Случайная величина Х, сосредоточенная на интервале [2;6], задана функцией распределения . Найти вероятность того, что а) меньше 4; б) меньше 6; в) не меньше 3; г) не меньше 6.
Случайная величина Х, сосредоточенная на интервале (1;4), задана квадратичной функцией распределения , имеющей максимум при х=4. Найти параметры a, b, c и вычислить вероятность попадания случайной величины Х в интервал [2;3].
Дана функция:
При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины Х? Найти математическое ожидание и дисперсию случайной величины Х.
Случайная величина Х задана функцией распределения
Найти: а) плотность вероятности φ(x); б) математическое ожидание M(Х); в) дисперсию D(X); г) вероятности P(Х=0,5), P(Х<0,5), P(0,5≤Х≤1); д) построить графики F(X) и φ(x) и показать на них математическое ожидание М(Х) и вероятности найденные в п. г).