Кремер Н.Ш. Теория вероятностей и математическая статистика. №003.064, стр.142


Случайная величина Х, сосредоточенная на интервале (1;4), задана квадратичной функцией распределения , имеющей максимум при х=4. Найти параметры a, b, c и вычислить вероятность попадания случайной величины Х в интервал [2;3].

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины Х? Найти математическое ожидание и дисперсию случайной величины Х.

Случайная величина Х задана функцией распределения

Найти: а) плотность вероятности φ(x); б) математическое ожидание M(Х); в) дисперсию D(X); г) вероятности P(Х=0,5), P(Х<0,5), P(0,5≤Х≤1); д) построить графики F(X) и φ(x) и показать на них математическое ожидание М(Х) и вероятности найденные в п. г).

По данным примера 3.66 найти: а) моду и медиану случайной величины X; б) квантиль х0,4 и 20%-ную точку распределения Х.

По данным примера 3.66 найти коэффициент асимметрии и эксцесс случайной величины Х.

Случайная величина распределена по закону Коши:

Найти: а) коэффициент А; б) функцию распределения F(X); в) вероятность Р(-1≤Х≤1). Существует ли для случайной величины Х математическое ожидание и дисперсия?

Случайная величина распределена по закону Лапласа:

Найти: а) коэффициент А; б) функцию распределения F(X); в) математическое ожидание и дисперсию. Построить графики функций φ(x) и F(x).

Случайная величина X распределена по закону «прямоугольного треугольника» в интервале (0;с). Найти: а) выражение плотности вероятности φ(x) и функции распределения F(x); б) математическое ожидание M(Х), дисперсию D(X), центральный момент µ3(Х); в) вероятность Р(с/2≤Х≤с) и показать её на данном в условии графике φ(x) и построенном графике F(x).

Решение задачи по теории вероятностей

Случайная величина Х, сосредоточенная на интервале [2;6], задана функцией распределения . Найти вероятность того, что а) меньше 4; б) меньше 6; в) не меньше 3; г) не меньше 6.

Случайная величина Х, сосредоточенная на интервале [-1;3], задана функцией распределения . Найти вероятность попадания случайной величины Х в интервал [0;2]. Построить график функции F(x).

Дана функция распределения случайной величины X:

а) Найти плотность вероятности φ(х);

б) построить графики φ(х) и F(х);

в) убедиться в том, что X - непрерывная случайная величина;

г) найти вероятности P(Х=1), P(Х<1), P(1<Х<2) (две последние вероятности показать на графиках φ(х) и F(x);

д) вычислить математическое ожидание M(Х), дисперсию D(Х), моду М0(Х) и медиану Мe(Х).

Найти коэффициент асимметрии и эксцесс случайной величины, распределенной по так называемому закону Лапласа с плотностью вероятности .

По данным примера 3.15 найти квантильную точку х0,1 и 30%-ную точку случайной величины X.

Найти моду, медиану и математическое ожидание случайной величины X с плотностью вероятности .

Функция задана в виде:

Найти: а) значение постоянной А, при которой функция будет плотностью вероятности некоторой случайной величины X; б) выражение функции распределения F(х); в) вычислить вероятность того, что случайная величина X примет значение на отрезке [2;3]; г) найти математическое ожидание и дисперсию случайной величины X.

Back to top