Случайная величина Х распределена по нормальному закону с математическим ожиданием а=0. При каком значении среднего квадратичного отклонения σ вероятность попадания случайной величины X в интервал (1;2) достигает максимума.
Другие задачи по теории вероятности
Время ремонта телевизора распределено по показательному закону с математическим ожиданием, равным 0,5ч. Некто сдает в ремонт два телевизора, которые одновременно начинают ремонтировать, и ждёт, когда будет отремонтирован один из них. После этого с готовым телевизором он уходит. Найти закон распределения времени: а) потраченного клиентом; б) которое должен потратить клиент, если он хочет забрать сразу два телевизора.
В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.
Вероятности того, что студент сдаст семестровый экзамен в сессию по дисциплинам А и В, равны соответственно 0,7 и 0,9. Составить закон распределения числа семестровых экзаменов, которые сдаст студент.
Дана случайная величина X:
| xi | -2 | 1 | 2 |
| pj | 0,5 | 0,3 | 0,2 |
Найти закон распределения случайных величин: а) Y = 3X, б) Z = X2.
Даны законы распределения двух независимых случайных величин:
X:
| xi | 0 | 2 | 4 |
| pi | 0,5 | 0,2 | 0,3 |
Y:
| yi | -2 | 0 | 2 |
| pj | 0,1 | 0,6 | 0,2 |
Найти закон распределения случайных величин: а) Z=Х-Y; б) U = XY.
Вычислить М(Х) и M(Y) в задаче о стрелках. Известны законы распределения случайных величин X и Y - числа очков, выбиваемых 1-м и 2-м стрелками.
| xi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| pi | 0,15 | 0,11 | 0,04 | 0,05 | 0,04 | 0,10 | 0,10 | 0,04 | 0,05 | 0,12 | 0,20 |
Вычислить М(Х) для случайной величины Х чистого выигрыша по данным примера 3.1: В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед.
Имеется случайная величина Х, распределенная по нормальному закону с математическим ожиданием а и дисперсией σ2. Требуется приближенно заменить нормальный закон распределения равномерным законом в интервале (α;β); границы α, β подобрать так, чтобы сохранить неизменными математическое ожидание и дисперсию случайной величины X.
Случайная величина Х распределена по нормальному закону с нулевым математическим ожиданием. Вероятность попадания этой случайной величины на отрезок с концами -1 до +1 равна 0,5. Найти выражение плотности вероятности и функции распределения случайной величины Х.
Известно, что нормально распределенная случайная величина принимает значение: а) меньшее 248 с вероятностью 0,975; б) большее 279 с вероятностью 0,005. Найти функцию распределения случайной величины X.
Месячный доход семей можно рассматривать как случайную величину, распределенную по логнормальному закону. полагая, что математическое ожидание этой случайной величины равно 1000ден.ед., а среднее квадратичное отклонение 800ден.ед., найти долю семей имеющих доход: а) не менее 1000ден.ед.; б) менее 500ден.ед.
20%-ная точка нормально распределенной случайной величины равна 50, а 40%-ная точка равна 35. Найти вероятность того, что случайная величина примет значение в интервале (25;45)
Квантиль уровня 0,15 нормально распределенной случайной величины X равен 12, а квантиль уровня 0,6 равен 16. Найти математическое ожидание и среднее квадратичное отклонение случайной величиной.
Нормально распределенная случайная величина имеет следующую функцию распределения: F(x)=0,5+0,5Ф(x-1). Из какого интервала (1;2) или (2;6) она примет значение с большей вероятностью?
Загружаем...