Месячный доход семей можно рассматривать как случайную величину, распределенную по логнормальному закону. полагая, что математическое ожидание этой случайной величины равно 1000ден.ед., а среднее квадратичное отклонение 800ден.ед., найти долю семей имеющих доход: а) не менее 1000ден.ед.; б) менее 500ден.ед.
Другие задачи по теории вероятности
Известно, что нормально распределенная случайная величина принимает значение: а) меньшее 248 с вероятностью 0,975; б) большее 279 с вероятностью 0,005. Найти функцию распределения случайной величины X.
Случайная величина Х распределена по нормальному закону с нулевым математическим ожиданием. Вероятность попадания этой случайной величины на отрезок с концами -1 до +1 равна 0,5. Найти выражение плотности вероятности и функции распределения случайной величины Х.
Имеется случайная величина Х, распределенная по нормальному закону с математическим ожиданием а и дисперсией σ2. Требуется приближенно заменить нормальный закон распределения равномерным законом в интервале (α;β); границы α, β подобрать так, чтобы сохранить неизменными математическое ожидание и дисперсию случайной величины X.
Случайная величина Х распределена по нормальному закону с математическим ожиданием а=0. При каком значении среднего квадратичного отклонения σ вероятность попадания случайной величины X в интервал (1;2) достигает максимума.
Время ремонта телевизора распределено по показательному закону с математическим ожиданием, равным 0,5ч. Некто сдает в ремонт два телевизора, которые одновременно начинают ремонтировать, и ждёт, когда будет отремонтирован один из них. После этого с готовым телевизором он уходит. Найти закон распределения времени: а) потраченного клиентом; б) которое должен потратить клиент, если он хочет забрать сразу два телевизора.
В лотерее разыгрываются: автомобиль стоимостью 5000 ден.ед., 4 телевизора стоимостью 250 ден.ед., 5 видеомагнитофонов стоимостью 200 ден.ед. Всего продается 1000 билетов по 7 ден.ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.
Вероятности того, что студент сдаст семестровый экзамен в сессию по дисциплинам А и В, равны соответственно 0,7 и 0,9. Составить закон распределения числа семестровых экзаменов, которые сдаст студент.