Найти эффективную оценку генеральной доли p повторной выборки.
Другие задачи по теории вероятности
Найти эффективную оценку генеральной средней (математического ожидания a) повторной выборки для нормально распределенной генеральной совокупности.
При обследовании выработки 1000 рабочих цеха в отчетном году по сравнению с предыдущим по схеме собственно-случайной выборки было отобрано 100 рабочих. Получены следующие данные (смотри первые две графы таблицы):

Необходимо определить: а) вероятность того, что средняя выработка рабочих цеха отличается от средней выборочной не более чем на 1% (по абсолютной величине); б) границы, в которых с вероятностью 0,9545 заключена средняя выработка рабочих цеха. Рассмотреть случаи повторной и бесповторной выборки.
Из партии, содержащей 2000 деталей, для проверки по схеме собственно-случайной бесповторной выборки было отобрано 200 деталей, среди которых оказалось 184 стандартных. Найти: а) вероятность того, что доля нестандартных деталей во всей партии отличается от полученной доли в выборке не более чем на 0,02 (по абсолютной величине); б) границы, в которых с надежностью 0,95 заключена доля нестандартных деталей во всей партии.
По условию примера 9.10 определить объем выборки, при котором с вероятностью 0,9973 отклонение средней выработки рабочих в выборке от средней выработки всех рабочих цеха не превзойдет 1% (по абсолютной величине).
По условию примера 9.11 определить число деталей, которые надо отобрать в выборку, чтобы с вероятностью 0,95 доля нестандартных деталей в выборке отличалась от генеральной доли не более, чем на 0,04 (по абсолютной величине). Найти то же число, если о доле нестандартных деталей, даже приблизительно, ничего неизвестно.
По данным примера 9.11 найти границы, в которых с надежностью 0,95 заключена доля p нестандартных изделий во всей партии, полагая n=50, w= 0,08, N=∞.
Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980ч., а среднее квадратическое отклонение их срока службы — 18ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на 8ч. (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.
Найти несмещенную и состоятельную оценку дисперсии случайной величины X - выработки рабочих цеха по данным выборки, представленной в таблице:

Найти несмещенную и состоятельную оценку средней выработки рабочих цеха по данным, представленной в таблице:

Найти несмещенную и состоятельную оценку доли рабочих цеха с выработкой не менее 124% по выборке, представленной в таблице:

Найти оценку метода наименьших квадратов для генеральной средней θ.
Найти оценки метода максимального правдоподобия для параметров a и σ2 нормального закона распределения по данным выборки.
Найти оценку метода максимального правдоподобия для вероятности p наступления некоторого события A по данному числу m появления этого события в n независимых испытаниях.
Найти оценку метода моментов для параметра λ закона Пуассона.
Загружаем...