Кремер Н.Ш. Теория вероятностей и математическая статистика. №009.009, стр.318


Найти эффективную оценку генеральной средней (математического ожидания a) повторной выборки для нормально распределенной генеральной совокупности.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

При обследовании выработки 1000 рабочих цеха в отчетном году по сравнению с предыдущим по схеме собственно-случайной выборки было отобрано 100 рабочих. Получены следующие данные (смотри первые две графы таблицы):

Таблица параметров задачи

Необходимо определить: а) вероятность того, что средняя выработка рабочих цеха отличается от средней выборочной не более чем на 1% (по абсолютной величине); б) границы, в которых с вероятностью 0,9545 заключена средняя выработка рабочих цеха. Рассмотреть случаи повторной и бесповторной выборки.

Из партии, содержащей 2000 деталей, для проверки по схеме собственно-случайной бесповторной выборки было отобрано 200 деталей, среди которых оказалось 184 стандартных. Найти: а) вероятность того, что доля нестандартных деталей во всей партии отличается от полученной доли в выборке не более чем на 0,02 (по абсолютной величине); б) границы, в которых с надежностью 0,95 заключена доля нестандартных деталей во всей партии.

По условию примера 9.10 определить объем выборки, при котором с вероятностью 0,9973 отклонение средней выработки рабочих в выборке от средней выработки всех рабочих цеха не превзойдет 1% (по абсолютной величине).

По условию примера 9.11 определить число деталей, которые надо отобрать в выборку, чтобы с вероятностью 0,95 доля нестандартных деталей в выборке отличалась от генеральной доли не более, чем на 0,04 (по абсолютной величине). Найти то же число, если о доле нестандартных деталей, даже приблизительно, ничего неизвестно.

По данным примера 9.11 найти границы, в которых с надежностью 0,95 заключена доля p нестандартных изделий во всей партии, полагая n=50, w= 0,08, N=∞.

Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980ч., а среднее квадратическое отклонение их срока службы — 18ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на . (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.

Опрос случайно отобранных 15 жителей города показал, что 6 из них будут поддерживать действующего мэра на предстоящих выборах. Найти границы, в которых с надежностью 0,9 заключена доля граждан города, которые будут поддерживать на предстоящих выборах действующего мэра.

Back to top