Кремер Н.Ш. Теория вероятностей и математическая статистика. №009.013, стр.327


По условию примера 9.11 определить число деталей, которые надо отобрать в выборку, чтобы с вероятностью 0,95 доля нестандартных деталей в выборке отличалась от генеральной доли не более, чем на 0,04 (по абсолютной величине). Найти то же число, если о доле нестандартных деталей, даже приблизительно, ничего неизвестно.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

По данным примера 9.11 найти границы, в которых с надежностью 0,95 заключена доля p нестандартных изделий во всей партии, полагая n=50, w= 0,08, N=∞.

Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980ч., а среднее квадратическое отклонение их срока службы — 18ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на . (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.

Опрос случайно отобранных 15 жителей города показал, что 6 из них будут поддерживать действующего мэра на предстоящих выборах. Найти границы, в которых с надежностью 0,9 заключена доля граждан города, которые будут поддерживать на предстоящих выборах действующего мэра.

На основании выборочных наблюдений производительности труда 20 работниц было установлено, что среднее квадратическое отклонение суточной выработки составляет 15м ткани в час. Предполагая, что производительность труда работницы имеет нормальное распределение, найти границы, в которых с надежностью 0,9 заключены генеральные дисперсия и среднее квадратическое отклонение суточной выработки работниц.

Решить задачу, приведенную в примере 9.17, при n=100 работницам.

Для исследования доходов населения города, составляющего 20тыс. человек, по схеме собственно-случайной бесповторной выборки было отобрано 1000 жителей. Получено следующее распределение жителей по месячному доходу (руб.):

Таблица исходных данных

Необходимо: 1. а) Найти вероятность того, что средний месячный доход жителя города отличается от среднего дохода его в выборке не более, чем на 45 руб. (по абсолютной величине); б) определить границы, в которых с надежностью 0,99 заключен средний месячный доход жителей города. 2. Каким должен быть объем выборки, чтобы те же границы гарантировать с надежностью 0,9973?

Для проверки эффективности новой технологии отобраны две группы рабочих: в первой группе численностью n1=50чел., где применялась новая технология, выборочная средняя выработка составила 85 (изделий), во второй группе численностью n2=70чел. выборочная средняя равна 78 (изделий). Предварительно установлено, что дисперсии выработки в группах равны соответственно σx2=100 и σy2=74. На уровне значимости α=0,05 выяснить влияние новой технологии на среднюю производительность.

Back to top