Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №1.17.5


Из полного набора костей берутся две. Найти вероятность того, что вторую кость можно приставить к первой.

Скачать решение бесплатно Купить решение
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,6, P(C)=0,4. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдет два и только два из этих событий.

Имеется две партии изделий в 12 и 18 шт.; в первой два, во второй три бракованных. Два изделия из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.

По воздушной цели производится стрельба из двух установок. Вероятность поражения цели первой установкой равна 0,85, второй – 0,9, а вероятность поражения цели двумя установками равна 1. Найти вероятность поражения цели, если первая установка срабатывает с вероятностью 0,8, а вторая – 0,7.

Известны вероятности независимых событий A, B, C: P(A)=0,7, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) произойдет одно и только одно из этих событий, б) произойдет не более двух событий.

В телеграфном сообщении «точка» и «тире» встречаются в соотношении три к двум. Известно, что искажаются 25% «точек» и 20% «тире». Найти вероятность того, что принят переданный сигнал, если принято «тире».

Счетчик регистрирует частицы трех типов – A, B, и C. Вероятность появления этих частиц P(A)=0,2, P(B)=0,5, P(C)=0,3. Частицы каждого из этих типов счетчик улавливает с вероятностями p1=0,8, p2=0,2, p3=0,4. Счетчик отметил частицу. Найти вероятность того, что это была частица типа B.

Известны вероятности независимых событий A, B, C: P(A)=0,4, P(B)=0,5, P(C)=0,7. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдут два и только два из этих событий.

Back to top