Известны вероятности независимых событий A, B, C: P(A)=0,4, P(B)=0,5, P(C)=0,7. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдут два и только два из этих событий.
Другие задачи по теории вероятности
Сколько раз нужно бросить пару игральных костей, чтобы с вероятностью, не меньшей 0,5, хотя бы один раз появилась сумма очков равная 12?
Первое орудие попадает в цель с вероятностью 0,6, второе - 0,7. Для поражения цели достаточно двух попаданий, а при одном попадании вероятность поражения цели 0,8. Какое-то орудие выстрелило дважды. Найти вероятность поражения цели.
Вероятность попадания в цель для первого стрелка – 0,8; второго – 0,7; третьего – 0,6. При одновременном выстреле всех трех имелось одно попадание. Найти вероятность того, что второй стрелок промахнулся.
Известна вероятность события А: р(А)=0,3. Дискретная случайная величина ξ – число появлений А в трех опытах.
Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
Случайная величина ξ имеет нормальное распределение с математическим ожиданием а=45 и средним квадратическим отклонением σ=7. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,96.
Известна вероятность события А: р(А)=0,2. Дискретная случайная величина ξ – число появлений А в трех опытах.
Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
Известна вероятность события А: р(А)=0,6. Дискретная случайная величина ξ – число появлений А в трех опытах.
Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
Счетчик регистрирует частицы трех типов – A, B, и C. Вероятность появления этих частиц P(A)=0,2, P(B)=0,5, P(C)=0,3. Частицы каждого из этих типов счетчик улавливает с вероятностями p1=0,8, p2=0,2, p3=0,4. Счетчик отметил частицу. Найти вероятность того, что это была частица типа B.
В телеграфном сообщении «точка» и «тире» встречаются в соотношении три к двум. Известно, что искажаются 25% «точек» и 20% «тире». Найти вероятность того, что принят переданный сигнал, если принято «тире».
Известны вероятности независимых событий A, B, C: P(A)=0,7, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) произойдет одно и только одно из этих событий, б) произойдет не более двух событий.
По воздушной цели производится стрельба из двух установок. Вероятность поражения цели первой установкой равна 0,85, второй – 0,9, а вероятность поражения цели двумя установками равна 1. Найти вероятность поражения цели, если первая установка срабатывает с вероятностью 0,8, а вторая – 0,7.
Имеется две партии изделий в 12 и 18 шт.; в первой два, во второй три бракованных. Два изделия из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.
Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,6, P(C)=0,4. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдет два и только два из этих событий.
Из полного набора костей берутся две. Найти вероятность того, что вторую кость можно приставить к первой.