Бестугин А.Р., Дийков А.Л. Теория вероятностей: Варианты контрольных работ. №1.16.5


Из 9 изделий число бракованных 0, 1 или 2 равновероятно. Зная, что 4 взятых наугад изделий годные, найти вероятность того, что оставшиеся тоже годные.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Известны вероятности независимых событий A, B, C: P(A)=0,8, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) все три события одновременно не произойдут, б) произойдет одно и только одно из этих событий.

Вероятность безотказной работы блока 0,85. Для надежности устанавливают такой же резервный. Найти вероятность того, что вся система работает безотказно.

В коробке было 9 белых и 6 черных шара, два из которых потерялись. Первый наугад взятый шар оказался белым. Найти вероятность того, что потерялись два черных шара.

Из полного набора костей берутся две. Найти вероятность того, что вторую кость можно приставить к первой.

Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,6, P(C)=0,4. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) произойдет два и только два из этих событий.

Имеется две партии изделий в 12 и 18 шт.; в первой два, во второй три бракованных. Два изделия из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.

По воздушной цели производится стрельба из двух установок. Вероятность поражения цели первой установкой равна 0,85, второй – 0,9, а вероятность поражения цели двумя установками равна 1. Найти вероятность поражения цели, если первая установка срабатывает с вероятностью 0,8, а вторая – 0,7.

Back to top