Производится испытание трех элементов, работающих независимо один от другого. Длительность времени безотказной работы элементов распределена по показательному закону: для первого элемента f1(t)=0,1е-0,1t, для второго f2(t)=0,2е-0,2t, для третьего элемента f3(t)=0,1е-0,3t. Найти вероятности того, что в интервале времени (0,10)ч откажут: а) хотя бы один элемент; б) не менее двух элементов.
Другие задачи по теории вероятности
Дискретная случайная величина X задана законом распределения:
X | 1 | 3 | 6 | 8 |
p | 0,2 | 0,1 | 0,4 | 0,3 |
Построить многоугольник распределения.
Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:
а)
X | -4 | 6 | 10 |
p | 0,2 | 0,3 | 0,5 |
б)
X | 0,21 | 0,54 | 0,61 |
p | 0,1 | 0,5 | 0,4 |
Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: a) Z=X+2Y, М(X)=5, M(Y)=3; б) Z=3X+4Y, М(X)=2, M(Y)=6.
Используя свойства математического ожидания, доказать, что: а) М(X-Y)=M(X)-M(Y); б) математическое ожидание отклонения X-М(Х) равно нулю.
Дискретная случайная величина X принимает три возможных значения: х1=4 с вероятностью р1=0,5; х2=6 с вероятностью р2=0,3 и х3 с вероятностью p3. Найти x3 и p3, зная, что М(Х)=8.
Дан перечень возможных значений дискретной случайной величины X: x1=-1, х2=0, x3=1, а также известны математические ожидания этой величины и ее квадрата: M(X)=0,1, M(X2)=0,9. Найти вероятности p1, p2, p3 соответствующие возможным значениям x1, x2, x3.
Дан перечень возможных значений дискретной случайной величины X: x1=1, х2=2, x3=3, а также известны математические ожидания этой величины и ее квадрата: M(X)=2,3, M(X2)=5,9. Найти вероятности, соответствующие возможным значениям X.