Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. №367, стр.119


Длительность времени безотказной работы элемента имеет показательное распределение F(t)=1-е-0,01t (t>0). Найти вероятность того, что за время длительностью t=50ч: а) элемент откажет; б) элемент не откажет.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      * Оплата через сервис ЮMoney.

Другие задачи по теории вероятности

Длительность времени безотказной работы элемента имеет показательное распределение F(t)=1-е-0,03t (t>0). Найти вероятность того, что за время длительностью t=100ч: а) элемент откажет; б) элемент не откажет.

Испытывают два независимо работающих элемента. Длительность времени безотказной работы первого элемента имеет показательное распределение F1(t)=1-е-0,02t, второго F2(t)=1-е-0,05t. Найти вероятность того, что за время длительностью t=6ч: а) оба элемента откажут; б) оба элемента не откажут; в) только один элемент откажет; г) хотя бы один элемент откажет.

Испытывают три элемента, которые работают независимо один от другого. Длительность времени безотказной работы элементов распределена по показательному закону: для первого элемента F1(t)=1-е-0,1t; для второго F2(t)=1-е-0,2t, для третьего элемента F3(t)=1-е-0,3t. Найти вероятности того, что в интервале времени (0,5)ч откажут: а) только один элемент; б) только два элемента; в) все три элемента.

Производится испытание трех элементов, работающих независимо один от другого. Длительность времени безотказной работы элементов распределена по показательному закону: для первого элемента f1(t)=0,1е-0,1t, для второго f2(t)=0,2е-0,2t, для третьего элемента f3(t)=0,1е-0,3t. Найти вероятности того, что в интервале времени (0,10)ч откажут: а) хотя бы один элемент; б) не менее двух элементов.

Дискретная случайная величина X задана законом распределения:


 

X 1 3 6 8
p 0,2 0,1 0,4 0,3


 

Построить многоугольник распределения.

Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:

а)

X -4 6 10
p 0,2 0,3 0,5

б)

X 0,21 0,54 0,61
p 0,1 0,5 0,4

 

Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: a) Z=X+2Y, М(X)=5, M(Y)=3; б) Z=3X+4Y, М(X)=2, M(Y)=6.

Back to top