Найти дисперсию и среднеквадратическое отклонение показательного закона, заданного функцией распределения F(x)=1- е-0,4x (x≥0).
Другие задачи по теории вероятности
Студент помнит, что плотность показательного распределения имеет вид f(x)=0 при x<0, f(x)=Cе-λx при x≥0; однако он забыл, чему равна постоянная C. Требуется найти С.
Найти теоретический центральный момент третьего порядка μ3=M[Х-М(Х)]3 показательного распределения.
Найти асимметрию AS= μ3/σ3(X) показательного распределения.
Найти теоретический центральный момент четвертого порядка μ4=M[Х-M(Х)]4 показательного распределения.
Найти эксцесс показательного распределения:
На шоссе установлен контрольный пункт для проверки технического состояния автомобилей. Найти математическое ожидание и среднеквадратическое отклонение случайной величины Т - времени ожидания очередной машины контролером, - если поток машин простейший и время (в часах) между прохождениями машин через контрольный пункт распределено по показательному закону f(t)=5е-5t.
Длительность времени безотказной работы элемента имеет показательное распределение F(t)=1-е-0,01t (t>0). Найти вероятность того, что за время длительностью t=50ч: а) элемент откажет; б) элемент не откажет.
Найти дисперсию и среднеквадратическое отклонение показательного распределения, заданного плотностью вероятности f(x)=10е-10x (x≥0).
Найти математическое ожидание показательного распределения, заданного при x≥0: а) плотностью f(x)=5е-5x; б) функцией распределения F(x)=1-е-0,1x.
Непрерывная случайная величина X распределена по показательному закону, заданному функцией распределения F(x)=1-е-0,6x при x≥0; при x<0 F(x)=0. Найти вероятность того, что в результате испытания X попадет в интервал (2,5).
Непрерывная случайная величина X распределена по показательному закону, заданному плотностью вероятности f(x)=0,04е-0,04x при x≥0; при x<0 f(x)=0. Найти вероятность того, что в результате испытания X попадает в интервал (1;2).
Непрерывная случайная величина X распределена по показательному закону, заданному плотностью вероятности f(x)=3е-3x при x≥0; при x<0 f(x)=0. Найти вероятность того, что в результате испытания X попадает в интервал (0,13;0,7).
Найти параметр λ показательного распределения: а) заданного плотностью f(x)=0 при x<0, f(x)=2е-2x при x≥0; б) заданного функцией распределения f(x)=0 при x<0 и F(x)=1-е-0,4x при x≥0.
Станок-автомат изготовляет валики, причем контролируется их диаметр X. Считая, что X – нормально распределенная случайная величина с математическим ожиданием a=10мм и среднеквадратическим отклонением σ=0,1мм, найти интервал, симметричный относительно математического ожидания, в котором с вероятностью 0,9973 будут заключены диаметры изготовленных валиков.