Свободный источник №1.3.0019


В типографии имеется 5 плоскопечатающих машин. Для каждой вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работают: а) 2 машины; б) хотя бы одна машина.

Для получения решения необходима Регистрация Для покупки решения необходима Регистрация
      *

Другие задачи по теории вероятности

При выпуске телевизоров количество экземпляров высшего качества в среднем составляет 80%. Выпущено 400 телевизоров. Найти: а) вероятность того, что 300 из них высшего качества; б) границы, в которых с вероятностью 0,9907 заключена доля телевизоров высшего качества.

Непрерывная случайная величина X принимает значения на интервале (1;+∞) и имеет там функцию распределения F(x)=1-C/x3 с параметром C. Найти: параметр C, медиану, вероятность P(0,5<X<2).

В партии из 8 деталей 6 – стандартных. Наугад отбираются две детали. Составить закон распределения случайной величины – числа стандартных деталей среди отобранных. Найти ее математическое ожидание, дисперсию и функцию распределения.

Непрерывная случайная величина X принимает значения на интервале (0;16) и имеет там плотность распределения f(x)=Cx-1/2 с параметром C. Найти: константу C, функцию распределения, моду, M(X), D(X).

1. Случайная величина X равномерно распределена на отрезке [25,100]. Найти вероятность P(35<X<60).

2. Случайная величина X распределена по показательному закону с параметром 4. Найти вероятность P(0,1<X<0,5).

Случайная величина X распределена по нормальному закону с параметрами 7, 2,5. Найти: а) вероятность P(1,5<X<25), б) интервал (x3,x4), симметрично расположенный относительно среднего значения, в который с вероятностью 0,95 попадает X.

В ткацком станке 1500 нитей. Вероятность обрыва одной нити за один час равна 0,008, X – число обрывов нити за данные 20 минут. Найти вероятность P(X=3), P(X>1). (Ответ вычислить по предельной теореме Пуассона).

На складе имеется 20 приборов, из них 2 неисправны. При отправке потребителю проверяется исправность приборов. Найти вероятность того, что первые 3 проверенных прибора исправны.

В первой корзине 8 чёрных шаров и 2 белых. Во второй корзине 6 чёрных и 4 белых. В третью корзину положили 2 шара из первой корзины и 2 шара из второй. Какая вероятность того, что в третьей корзине оказалось 3 белых.

2 орудия стреляют по двум целям. Каждое орудие выбирает себе цель случайно и независимо от другого. Каждое орудие попадает в цель с вероятностью р. Одна цель оказалась поражена, другая нет. Найти вероятность того, что орудия стреляли по разным целям.

Закон распределения двумерной дискретной случайной величины (X,Y) задан таблицей:

Найти условные законы распределения случайной величины X при условии, что Y=1 случайной величины Y при условии, что Х=1.

Случайная величина X задана плотностью распределения вероятностей (на графике). Построить график функции распределения вероятностей, найти математическое ожидание и дисперсию случайной величины.

Строительная фирма раскладывает рекламные листы по почтовым ящикам. Прежний опыт показывает, что в одном случае из двух тысяч следует заказ. Найти вероятность того, что при распространении 100 тыс. листов число заказов будет: а) равно 55; б) находится в границах от 50 до 60.

В одном сосуде находится Б1 белых и Ч1 черных шаров. Во втором – Б2 белых и Ч2 черных. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10? Б1=7, Ч1=5, Б2=9, Ч2=6.

Back to top