По двум независимым выборкам, объемы которых n=40 и m=50, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние соответственно равные 130 и 140. Генеральные дисперсии известны: D(X)=80, D(Y)=100. Требуется при уровне значимости 0,01 проверить нулевую гипотезу Н0:М(X)=М(Y) при конкурирующей гипотезе H1:M(X)≠M(Y).
Другие задачи по теории вероятности
По выборке объема n=30 найден средний вес 130г изделий, изготовленных на первом станке; по выборке объема m=40 найден средний вес 125г изделий, изготовленных на втором станке. Генеральные дисперсии известны: D(X)=60гa2, D(Y)=80га2. Требуется, при уровне значимости 0,05, проверить нулевую гипотезу H0: М(X)=М(Y) при конкурирующей гипотезе М(X)≠М(Y). Предполагается, что случайные величины X и Y распределены нормально и выборки независимы.
По выборке объема n=50 найден средний размер 20,1мм диаметра валиков, изготовленных автоматом №1; по выборке объема m=50 найден средний размер 19,8мм диаметра валиков, изготовленных автоматом №2. Генеральные дисперсии известны: D(X)=1,75мм2, D(Y)=1,375мм2. Требуется, при уровне значимости 0,05, проверить нулевую гипотезу H0:М(X)=М(Y) при конкурирующей гипотезе М(X)≠М(Y). Предполагается, что случайные величины X и Y распределены нормально и выборки независимы.
По двум независимым малым выборкам, объемы которых n=12 и m=18, извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние: 31,2, 29,2 и исправленные дисперсии: sX2=0,84 и sY2=0,40. Требуется при уровне значимости 0,05 проверить нулевую гипотезу H0:М(X)=М(Y) при конкурирующей гипотезе Н1:M(Х)≠М(Y).