По данным примера 10.14 на уровне значимости α=0,05 проверить гипотезу H0 об однородности двух выборок (результатов двух проверок торговых точек города).
Другие задачи по теории вероятности
Для эмпирического распределения рабочих цеха по выработке по данным первых двух граф таблицы подобрать соответствующее теоретическое распределение и на уровне значимости α=0,05 проверить гипотезу о согласованности двух распределений с помощью критерия χ2.
Имеются следующие статистические данные о числе вызовов специализированных бригад скорой помощи в час в некотором населенном пункте в течение 300 ч:
Число вызовов в часах xi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Σ |
Частота ni | 15 | 71 | 75 | 68 | 39 | 17 | 10 | 4 | 1 | 300 |
Подобрать соответствующее теоретические распределение и на уровне значимости α=0,05 поверить гипотезу о согласованности двух распределений с помощью критерия χ2.
По данным примера 10.12 и таблице с помощью критерия Колмогорова на уровне значимости α=0,05 проверить гипотезу H0 о том, что случайная величина X - выработка рабочих предприятия - имеет нормальный закон распределения с параметрами a=119,2; σ2=87,48, т.е. N(119,2; 87,48).
В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:
Можно ли считать, что на уровне значимости α=0,05 по результатам двух проверок (случайных выборок) недовесы овощей описываются одной и той же функцией распределения?
Дано распределение признака X - месячный доход жителя региона (в руб.); n=1000 (жителей):
Необходимо:
1) построить полигон (гистограмму), кумуляту и эмпирическую функцию распределения Х;
2) найти:
а) среднюю арифметическую;
б) медиану и моду;
в) дисперсию, среднее квадратическое отклонение и коэффициент вариации;
г) начальные и центральные моменты k-го порядка (k=1, 2, 3, 4);
д) коэффициент асимметрии и эксцесс.
Дано распределение признака X - удой коров на молочной ферме за лактационный период (в ц.); n=100 (коров):
Необходимо:
1) построить полигон (гистограмму), кумуляту и эмпирическую функцию распределения Х;
2) найти:
а) среднюю арифметическую;
б) медиану и моду;
в) дисперсию, среднее квадратическое отклонение и коэффициент вариации;
г) начальные и центральные моменты k-го порядка (k=1, 2, 3, 4);
д) коэффициент асимметрии и эксцесс.
В таблице приведено распределение 50 рабочих по производительности труда X (единиц за смену), разделенных на две группы: 30 и 20 человек.
Вычислить общие и групповые средние и дисперсии и убедиться в справедливости правила сложения дисперсий.