По данным примера 9.11 на уровне значимости α=0,05 проверить гипотезу о том, что доля нестандартных деталей во всей партии равна 12%.
Другие задачи по теории вероятности
По данным примера 9.17 на уровне значимости α=0,1 проверить гипотезу о том, что среднее квадратическое отклонение суточной выработки работниц равно 20м/ч.
По данным примера 10.14 на уровне значимости α=0,05 проверить гипотезу H0 об однородности двух выборок (результатов двух проверок торговых точек города).
Для эмпирического распределения рабочих цеха по выработке по данным первых двух граф таблицы подобрать соответствующее теоретическое распределение и на уровне значимости α=0,05 проверить гипотезу о согласованности двух распределений с помощью критерия χ2.
Имеются следующие статистические данные о числе вызовов специализированных бригад скорой помощи в час в некотором населенном пункте в течение 300 ч:
Число вызовов в часах xi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Σ |
Частота ni | 15 | 71 | 75 | 68 | 39 | 17 | 10 | 4 | 1 | 300 |
Подобрать соответствующее теоретические распределение и на уровне значимости α=0,05 поверить гипотезу о согласованности двух распределений с помощью критерия χ2.
По данным примера 10.12 и таблице с помощью критерия Колмогорова на уровне значимости α=0,05 проверить гипотезу H0 о том, что случайная величина X - выработка рабочих предприятия - имеет нормальный закон распределения с параметрами a=119,2; σ2=87,48, т.е. N(119,2; 87,48).
В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:
Можно ли считать, что на уровне значимости α=0,05 по результатам двух проверок (случайных выборок) недовесы овощей описываются одной и той же функцией распределения?
Дано распределение признака X - месячный доход жителя региона (в руб.); n=1000 (жителей):
Необходимо:
1) построить полигон (гистограмму), кумуляту и эмпирическую функцию распределения Х;
2) найти:
а) среднюю арифметическую;
б) медиану и моду;
в) дисперсию, среднее квадратическое отклонение и коэффициент вариации;
г) начальные и центральные моменты k-го порядка (k=1, 2, 3, 4);
д) коэффициент асимметрии и эксцесс.