В коробке было 9 белых и 6 черных шара, два из которых потерялись. Первый наугад взятый шар оказался белым. Найти вероятность того, что потерялись два черных шара.
Другие задачи по теории вероятности
Из 18 стрелков пять попадают в цель с вероятностью P1=0,8; семь с P2=0,7; четыре с P3=0,6 и два с P4=0,5. Наудачу выбранный стрелок промахнулся. К какой из групп вероятнее всего он принадлежит?
Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,6, P(C)=0,4. Определить вероятность того, что: а) произойдет по крайней мере одно из этих событий, б) ни одного события не произойдет.
Деталь проходит три стадии обработки. Вероятность получения брака на первой стадии – 0,02; на второй – 0,06; на третьей – 0,12. Какова вероятность изготовления бракованной детали.
Имеется две партии изделий в 15 и 20 шт.; в первой два, во второй три бракованных. Одно изделие из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.
Три охотника выстрелили по зверю, который был убит одной пулей. Найти вероятность того, что зверь был убит третьим стрелком, если вероятности попадания равны P1=0,5; P2=0,6; P3=0,7.
Известны вероятности независимых событий A, B, C: P(A)=0,7, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) произойдет одно и только одно из этих событий, б) произойдет не более двух событий.
В телеграфном сообщении «точка» и «тире» встречаются в соотношении 4:3. Известно, что искажаются 25% «точек» и 20% «тире». Найти вероятность того, что принят переданный сигнал, если принято «тире».
Вероятность того, что произойдет одно и только одно событие из двух 0,44. Какова вероятность второго события, если вероятность первого – 0,8.
Известны вероятности независимых событий A, B, C: P(A)=0,8, P(B)=0,4, P(C)=0,5. Определить вероятность того, что: а) произойдут по крайней мере два из этих событий, б) произойдет не более одного события.
Из 10 изделий число бракованных (0,1,2) равновероятно. Зная, что 5 взятых наугад изделий годные, найти вероятность того, что оставшиеся тоже годные.
Три стрелка стреляют в цель с вероятностями 0,7; 0,4; 0,3. При их одновременном выстреле имеется два попадания. Что вероятнее: попал третий стрелок в цель или промахнулся?
Вероятность попадания в цель для первого стрелка – 0,6; второго – 0,7; третьего – 0,8. Найти вероятность того, что будет хотя бы два попадания.
Известны вероятности независимых событий A, B, C: P(A)=0,5, P(B)=0,3, P(C)=0,6. Определить вероятность того, что: а) произойдут только события A и B, б) произойдет не более двух событий.
Из 20 стрелков шесть попадают в цель с вероятностью 0,8; девять – с вероятностью 0,5 и пять с вероятностью 0,2. Наудачу выбранный стрелок попал в цель. К какой из групп он вероятнее всего принадлежит?
Загружаем...